

Working Draft

Version 3.6 - May 2005

Purpose Statement

This booklet provides reference information about Earth and Earth-Sun system models with a NASA affiliation. For the purposes of this booklet, a NASA affiliation is considered to be either a history of NASA funding or use of NASA science products.

Models in the booklet are categorized as "ESMF" (The Earth System Modeling Framework) or "other NASA-affiliated". These categories are further divided into NASA-led and partner-led subcategories. ESMF is a significant mutiagency effort (funded in part by NASA) to create a modeling framework that enhances interoperability among various Earth system models.

Table of Contents

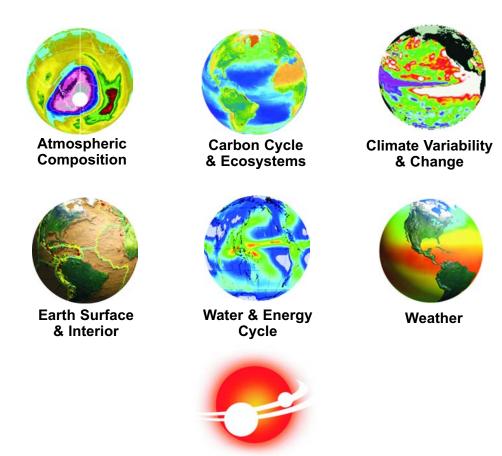
NASA Vision and Mission	2
Science Mission Directorate Earth-Sun System Division	3
Research Strategy	
Science Questions	
Applications of National Priority	
System Solutions Architecture	8
Earth System Modeling Framework	10
Earth System Modeling Framework Overview	11
NASA-led	
GMAO Atmospheric Analysis	12
GMAO Atmosphere	
GMAO Ocean Analysis	
GSFC Global LIS	15
Partner-led	
ECCO OSE	16
GFDL FMS B-grid Atmosphere	
GFDL FMS HIM Ocean	
GFDL MOM4 Ocean	
GMAO Ocean	
LANL CICE	
LANL HYPOP	22
LANL POP Ocean	23
MITgcm Atmosphere	
MITgcm Ocean	
NCAR CAM	26
NCAR CLM	27
NCEP Analysis	28
NCEP Atmosphere	
UCLA AGCM	
WRF	31

Table of Contents - Continued

NASA Affiliated Earth-Sun Science Models and Analysis System	ns33
NASA-led	
CASA	34
CM-4	35
EGM-96	
GEOS - 4 AGCM	
GISS ModelE	
GISS Model II	
GISS Model III	
GSFC Aerosol Assimilation System	
GSFC Catchment LSM	
GSFC CEM	
GSFC CTM	
GSFC GMI	
GSFC GOCART	
GSFC Ocean Biology	4/
GSFC Ozone Assimilation System	
GSFC 2D Model	
Mosaic LSM	
RAQMS	51
Partner-led	
AGWA	
CIMMS-CCM	
CIP	
FIP	
GEOS-CHEM	
GTG	
Hysplit4	
MM5	
NCAR TIMEGCM	
NCVP	
NCWF	
RUC	
SMOKE	
SWAT	
WACCMWAVEWATCH III	
WAVEWATCH III	
Partner-led Solar	
BATS-R-US EEG.	68
BATS-R-US GM.	
BATS-R-US IE	70
BATS-R-US IH	
BATS-R-US SC	72
GITM	
Open GGCM	
RCM	
Earth-Sun Science Laboratories	76
Suggested Reading	77

To improve life here, To extend life to there, To find life beyond.

The NASA Mission


To understand and protect our home planet, To explore the universe and search for life, To inspire the next generation of explorers... as only NASA Can

www.nasa.gov

Science Mission Directorate Earth-Sun System Division

Focus Areas

The NASA Earth-Sun Division seeks to develop a scientific understanding of the Earth-Sun system and its response to natural and humaninduced changes to enable improved prediction of climate, weather, and natural hazards for present and future generations.

Sun Solar System

Research Strategy

NASA's Earth-Sun System Division is developing a scientific understanding of the Earth-Sun system and its response to natural and human-induced changes to enable improved prediction capability for climate, weather, and natural hazards. The Earth-Sun System Division has an end-to-end strategy to ensure that all the information, understanding, and capabilities derived from its research program achieve maximum usefulness for the scientific and decision-making communities. Increasing our knowledge of the Earth system is the goal of the Earth-Sun System Division's Research Program, which is complemented by the Earth-Sun System Division's Applied Sciences Program and Technology Program.

The Earth-Sun System Division has defined its research strategy around a hierarchy of scientific questions. At the highest level, the Earth-Sun System Division is attempting to provide an answer to one overarching question:

How is the Earth changing and what are the consequences for life on Earth?

The magnitude and scope of this question are too large to allow a simple answer, requiring a lower tier of questions that provide the conceptual approach that the Earth-Sun System Division is taking to improve our knowledge of the Earth system:

Variability: How is the global system changing?

Forcing: What are the primary forcings of the Earth system?

Response: How does the Earth system respond to natural and human-induced changes?

Consequence: What are the consequences of change in the Earth system for human civilization?

Prediction: How well can we predict future changes in the Earth system?

Science Questions

Variability	Forcing	Response	Consequence	Prediction	
Precipitation, evaporation & cycling of water changing?	Atmospheric constituents & solar radiation on climate?	Clouds & surface hydrological processes on climate?	Weather variation related to climate variation?	Weather forecasting improvement?	
Global ocean circulation varying?	Changes in land cover & land use?	Ecosystem responses & effects on global carbon cycle?	Consequences in land cover & land use?	Transient climate variations?	
Global ecosystems changing?	Surface trans- formation?	Changes in global ocean circulation?	Coastal region change?	Trends in long-term climate?	
Stratospheric ozone changing?		Stratospheric trace constituent responses?		Future atmospheric chemical impacts?	
Ice cover mass changing?		Sea level affected by climate changes?		Future concentrations of carbon dioxide and methane?	
Motions of Earth & interior processes?		Pollution effects?			
Requires both systematic & exploratory satellites					
Requires systematic satellite observations					
Requires exploratory satellite observations					
Requires pre-operational and/or systematic/exploratory satellites					
Use available/new observations in better models					

Applications of National Priority

Agricultural Efficiency

Air Quality

Aviation

Carbon Management

Coastal Management

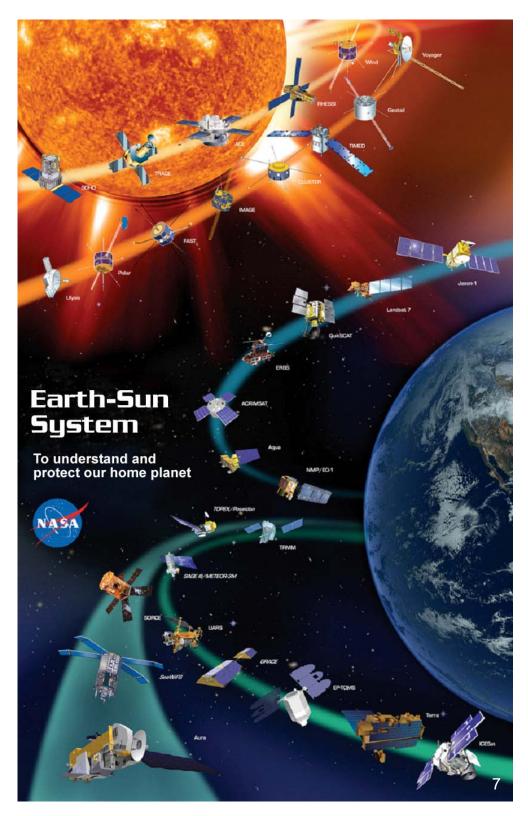
Ecological Forecasting

Disaster Management

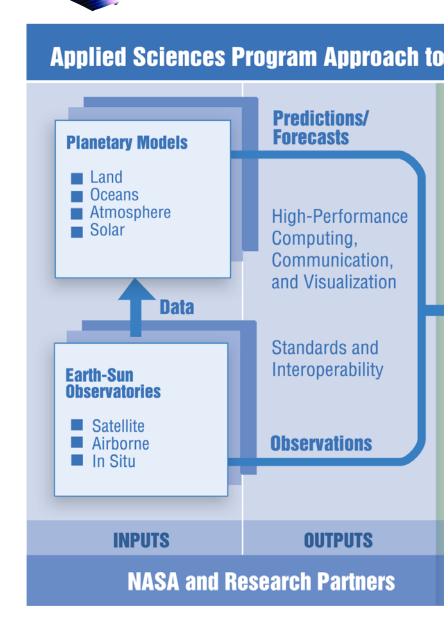
Energy Management

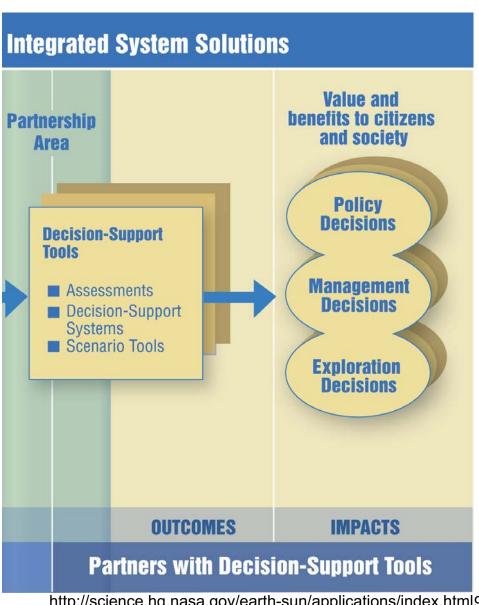
Homeland Security

Invasive Species



Public Health


Water Management


The NASA Applied Sciences Program mission is to expand and accelerate the realization of economic and societal benefits from Earth science, information, and technology. The overarching goal is to bridge the gap between Earth system science research results and the adoption of observations and prediction capabilities for reliable and sustained use in decision support.

Integrated System Solutions Architecture

NASA employs a systems engineering approach to bridge the gap between Earth-Sun system science missions and models. The data and prediction capabilities are adopted for reliable and sustained use in decision support.

http://science.hq.nasa.gov/earth-sun/applications/index.html9

Earth System Modeling Framework Overview

- Over the last few years, the need for software infrastructure for Earth system modeling has grown increasingly apparent.
 Models and the computational platforms that they run on have become extremely complex, leading to excessive time and resources dedicated to solving computational rather than scientific problems.
- The Earth System Modeling Framework (ESMF) collaboration, which consists of Earth scientists and computational experts from major U.S. Earth modeling centers, is developing a robust, flexible set of software tools to enhance ease of use, performance portability, interoperability, and reuse in climate, numerical weather prediction, and data assimilation applications.
 - The ESMF will allow diverse scientific groups to leverage common software to solve routine computational problems such as efficient data communication, model component coupling and sequencing, time management, and parameter specification.
 - In an open dialogue with the broader community, the collaboration will also develop a software interface specification so that groups working at different institutions and in different disciplines can generate interoperable software components.
- The ESMF project is funded by the NASA Earth ScienceTechnology Office (ESTO) Computational Project under the Cooperative Agreement Notice (CAN) entitled: Increasing Interoperability and Performance of Grand Challenge Applications in the Earth, Space, Life and Microgravity Sciences. Funding began February 2002 and will consist of \$10 million over three years.

Earth System Modeling Framework Models

GMAO Atmospheric Analysis

Purpose: The atmospheric analysis component blends irregularly distributed (in space and time) observations with a regularly gridded model background state to produce a regularly gridded analysis state. This component encompasses the following tasks: (i) converts the gridded background state (forecast model variables) into an analysis background state, (ii) applies appropriate quality control procedures to the input observation streams (i.e. conventional, radiance data), (iii) computes (and saves with associated quality flags) observation-minus-forecast residuals (O-F), (iv) génerates analysis increments from O-F using the GMAO general circulation model (GCM) plus GSI algorithm, (v) converts the analysis state back to a gridded state in GCM state variables.

INPUTS

- AMSU-A / AIRABRAD: AMSU-A Calibrated. Geolocated Radiances
- Conventional / Aircraft Flight Level Data
- MODIS / Atmospheric Motion Vectors
- GOES Imager / Atmospheric Motion Vectors
- HIRS / Radiances
- · GOES Sounder / Radiances
- Conventional / Rawindsondes
- · Conventional / Ship and Buoy Wind, Temp
- TOMS / TOMS: Ozone
- GMAO Atmosphere / Humidity
- GMAO Atmosphere / Meridional wind component
- GMAO Atmosphere / Ozone
- GMAO Atmosphere / Pressure
- GMAO Atmosphere / Temperature
- GMAO Atmosphere / Zonal wind component

Model Platforms

- GSFC SGI Origin 3000 (Daley) - GSFC Compaq (Halem)

Program Size: Approx. 150,000 lines

Run Time: Approx 5 min. on Halem platform/32pe, at 200km horizontal

resolution, 32 levels

Resolution

Temporal: 6-hourly data-ingest and analysis cycle

Vertical: 64 levels (variable) Horizontal: 0.5 degree (variable) Range

Temporal: 1979 to present Vertical: surface to mesosphere

Horizontal: global

Access to model product: GSFC Distributed Active Archive Center (DAAC): http://daac.gsfc.nasa.gov/

Validation: Prototype: Wu et al. (2002), Monthly Weather Review

Config Control: GMAO tag #: gmao-gsi_1_0beta2

POC: Ronald Gelaro

Affiliation: NASA Global Modeling and Assimilation Office

Email Address: ron.gelaro@nasa.gov

Phone #: 301-614-6179

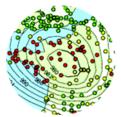
Funding: NASA

Contract #: GMAO core funded

Contract Name:

Past Funding:

Currently Use NASA Data Products as Input: Yes


Being Investigated for Use of NASA Data Products as Input: Yes

Website: TBD

Model Partners

NOAA/NWS/NCEP/EMC

Information Last Updated: 7/12/2004

Atmospheric Analysis

- Atmospheric temperature
- Atmospheric pressure
- Humidity
- · Wind velocity

GMAO Atmosphere

Purpose: A Unified atmospheric model intended for use in a wide range of applications, including numerical weather prediction, data assimilation, seasonal forecasting, climate prediction, atmospheric chemistry studies, atmosphere land interactions, and coupled ocean-atmosphere modeling.

- HALOE / UARS HALOE Level 3AT Daily Time Ordered Data
- GSFC GOCART / 3-D distribution of each aerosol type
 GSFC GOCART / Absorption
- GSFC GOCART / Aerosol particle size
- GMAO Atmospheric Analysis / Atmospheric pressure
- GMAO Atmospheric Analysis / Atmospheric temperature
- GSFC GOCART / Column burden of individual aerosol species
- GSFC GOCART / Dust emission
- · GMAO Atmospheric Analysis / Humidity
- GSFC GOCART / Individual aerosol concentration
- GSFC GOCART / Optical thickness of individual and total
- aerosols
- GSFC Catchment LSM / Radiation flux
- GSFC GOCART / Radiative forcing
- GMAO Ocean / Sea surface temperature
- GSFC GOCART / Sea-salt emission
 GSFC Catchment LSM / Sensible heat flux

- GSFC Catchment LSM / Sensible heat flux
 GSFC GOCART / Single scattering albedo
 GSFC Catchment LSM / Snow depth
 GSFC Catchment LSM / Soil moisture
 GSFC Catchment LSM / Surface evaporation
 GSFC Catchment LSM / surface radiation budget
 GSFC Catchment LSM / Surface temperature
 GSFC GOCART / Total aerosol concentration
 GSFC Catchment LSM / Water balance
 GSFC Catchment LSM / Water balance

- GMAO Atmospheric Analysis / Wind velocity

Model Platforms

- HP Compaq

Program Size: 3.2 MBytes

Run Time: 6 hours Resolution

Temporal: 30 min Vertical: 55 layers

Horizontal: adjustable from 50km to 200km

Range

Temporal: days to decades

Vertical: surface to 60 km

Horizontal: Global

Access to model product: http://gmao.gsfc.nasa.gov/ OR

contact POC

Validation: http://gmao.gsfc.nasa.gov/

Config Control: G-Forge at sourcemotel.gsfc.nasa.gov

POC: Max J. Suarez

Affiliation: GMAO

Email Address: max.j.suarez@nasa.gov

Phone #: 301 614 5292

Funding: NASA ESE

Contract #: RTOP-621-85-01 Contract Name:

Past Funding:

Currently Use NASA Data Products as Input: Yes

Being Investigated for Use of NASA Data Products as

Input: Yes

Website: http://gmao.gsfc.nasa.gov/

Model Partners

GEST

Atmosphere Model

- Dust emission
- Optical thickness of individual and total aerosols
- Column burden of individual aerosol species
- Total aerosol concentration
- Individual aerosol concentration
- 3-D distribution of each aerosol
- Aerosol particle size
- Absorption
- Single scattering albedo
- Heating / Cooling Rates
- Surface geopotential
- Atmospheric temperature
- Atmospheric pressure
- Precipitation rate
- Total precipital water
- Wind surface stress
- Geopotential height
- Humidity
- Friction velocity
- Boundary layer height
- Cloud cover
- Cloud optical depth
- Wind velocity change rate
- Humidity change rate
- Eddy diffusivity
- · Cloud mass flux
- Ozone concentration
- Atmospheric temperature change
- Wind velocity
- Surface heat and moisture fluxes

GMAO Ocean Analysis

Purpose: Ocean analyses are primarily conducted for initialization of coupled seasonal-to-interannual forecasts, but also to make a best estimate of the ocean state for climate diagnostic purposes.

INPUTS

- Surface momentum, heat flux and fresh water forcing products
- AVHRR /
- Argo / Salinity profile
- CTD / Salinity profile
 Moored data / Temperature
- Argo / Temperature profile
- XBT / Temperature profileCTD / Temperature profile

- GMAO Ocean / 3-D ocean salinity field
 GMAO Ocean / 3-D ocean temperature field
 GMAO Ocean / 3-D ocean velocity components
- · GMAO Ocean / Sea surface height

Model Platforms

- HP Compag Program Size: 7MB

Run Time: 1.5 hours for OI assimilation on 64 PEs

Resolution

Temporal: Products are generally monthly means; but higher

resolution products are also available

Vertical: 27 layers for V4, 34 layers for V5; resolution is

spatially variable

Horizontal: 1/3 deg. latitude X 5/8 deg. longitude

Temporal: 1993 to present, monthly averages

Vertical: surface to 1500m depth

Horizontal: 90S - 72N

Access to model product: please contact the model

Point of Contact

Validation: Keppenne, C.L, and M.M. Rienecker, Monthly Weather Review, V130, 2951-2964, 2002.

Config Control: V4

POC: Michele Rienecker

Affiliation: Code 900.3, NASA/Goddard Space Flight Center

Email Address: Michele.Rienecker@nasa.gov

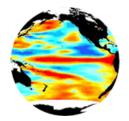
Phone #: 301-614-6142

Funding: NASA

Contract #: RTOP 622-48-04

Contract Name: Past Funding:

Currently Use NASA Data Products as Input: Yes


Being Investigated for Use of NASA Data Products as Input: Yes Website: http://nsipp.gsfc.nasa.gov/research/ocean/ocean assim.html

Model Partners

SAIC

Notes: Multivariate Optimal Interpolation (MVOI) is referenced in: Borovikov. A.Y., M.M. Rienecker, C.L. Keppenne, and G.C. Johnson, Multivariate error covariance estimates by Monte-Carlo simulation for assimilation studies in the North Pacific, Mon. Wea. Rev. (submitted) 2004.

Information Last Updated: 5/10/2004

Ocean Data Assimilation System

- 3-D ocean temperature field
- · 3-D ocean salinity field
- 3-D ocean velocity components
- Sea surface height

GSFC Global LIS

Purpose: LIS is a high performance land surface modeling system capable of modeling global and regional land-atmosphere interactions at spatial resolutions down to 1km. LIS is a high-performance version of the Global and North American Land Data Assimilation Systems (LDAS; http://ldas.gsfc.nasa.gov) and consists of several land surface models run offline using observationally-based precipitation, radiation and meteorological inputs, and surface parameters.

INPLITS

- · Near surface air temperature
- Near surface CO2 concentration
- · Near surface specific humidity
- Near surface wind
- Rainfall
- Surface incident shortwave and longwave radiation
- Surface pressure
- AVHRR / Land Cover Type
- AVHRR / Leaf Area Index
- MODIS / MOD09: Surface Reflectance
- MODIS / MOD10: Snow Cover
- MODIS / MOD11: Land Surface Temperature and Emissivity
- MODIS / MOD12: Land Cover Type
 MODIS / MOD15: Leaf Area Index and Fraction of
 - Photosynthetically Active Radiation
- GOES İmager / Surface Radiation Budget
- NCEP Analysis / All model inputs listed below
- NCEP Atmosphere / All model inputs listed below
- GEOS-4 AGCM / All model inputs listed below
- AGRMET / Surface incident shortwave and longwave radiation

Model Platforms

- SGI IRIX64 6.5
- Linux PC (Intel/AMD based)
- IBM SP2
- Program Size: 64MB

Run Time: Depends on resolution/temporal range: seconds to days

Resolution

Temporal: Ranges from 1 second to 3600 seconds

Vertical: Ranges from 5cm to 1 m (thickness of soil layers)

Horizontal: Ranges from 2x2.5 degree to 1 km

Range

Temporal: Ranges from 1 day- years or more

Vertical: Ranges from 1 to 10 m (depth in soil)

Horizontal: Ranges from regional up to 0-360 degrees Longitude,

60S-90N degrees Latitude

Access to model product: please reference http://lis.gsfc.nasa.gov

Validation: N/A

Config Control: Version 2.3 POC: Dr. Christa Peters-Lidard

Affiliation: NASA/GSFC Hydrological Sciences Branch

Email Address: christa.peters@nasa.gov

Phone #: 301-614-5811 Funding: NASA

Contract #: GSFC-CT-2

Contract Name:

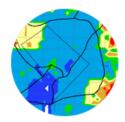
Past Funding:

Currently Use NASA Data Products as Input: Yes

Being Investigated for Use of NASA Data Products as Input: Yes

Website: http://lis.gsfc.nasa.gov

Model Partners


NASA Goddard Space Flight Center Hydrological Sciences Branch

NOAA National Centers for Environmental Prediction

· Princeton University Department of Civil and Environmental Engineering

Center for Ocean-Land Atmospheric Studies

Notes: Future version of the Land Information System with added functionality will be available 9/2004. LIS version 2.3 was released in December of 2003.

Land Surface Modeling System

- · Sensible heat flux
- Soil moisture
- Surface temperature
- Radiation flux
- · Snow depth
- Water balance
- · surface radiation budget
 - Energy balance
 - Runoff
 - Soil Temperature
 - Snow water equivalent
- Latent heat flux
- · Ground heat flux
- Evapotranspiration
- Evaporation
- Transpiration
- Infiltration

ECCO OSE

Purpose: Overall goal is to bring ocean state estimation from its experimental status to that of a practical and quasi operational tool for studying large-scale ocean dynamics, designing observational strategies, and examining the ocean's role in climate variability. Our technical goal is the sustained production and evaluation of continuing three-dimensional estimates of the global state of the ocean in near-real time in support of programs such as GODAE and CLIVAR. The main task is to bring together a global GCM with existing global data streams - including TOPEX/POSEIDON and JASON altimeter observations and in situ hydrographic and flow measurements such as what will be available from the ARGO program - to obtain the best possible estimate of the time evolving ocean circulation and related uncertainties.

INPUTS

- AVHRR / AVHRR: Sea Surface Temperature
- CTD / CTD Temperature
- Floats / Floats Temperature
- JMR / Jason: Sea Surface Height
- Moored data / Moorings Temperature
- · SeaWinds / SeaWinds: Wind Speed and Direction
- TOPEX/Poseidon / TOPEX: Sea Surface Height
- XBT / XBT Temperature
- NCEP Analysis / All model inputs listed below

Model Platforms - SGI Origin 2000

Program Size: 19GB runtime memory, 40000 lines of code Run Time: 6hours on 64cpu SGI Origin 2000 for 1-model year

integration Resolution

Temporal: 1hour, 12hour, 10day, 30day Vertical: 10m~400m; 10m~500m Horizontal: 1-deg to 1/3-deg; 1-deg; 2-deg

Range

Temporal: 1993 to present; 1992 to 2002 Vertical: surface to bottom of ocean

Horizontal: 78S to 78N

Access to model product:

http://www.ecco-group.org; http://ecco.jpl.nasa.gov/las Validation: See http://www.ecco-group.org/publications.html

Config Control: ECCO 1: ECCO 2

Config Control: ECCO-1; ECCO-2

POC: Ichiro Fukumori

Affiliation: Jet Propulsion Laboratory Email Address: fukumori@jpl.nasa.gov

Phone #: 818-354-6965

Funding: NASA, National Oceanographic Partnership Program (NOPP)

Contract #: 622.48.24, 622.50.02, 622.50.01, 622.48.35

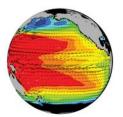
Contract Name: Past Funding:

Currently Use NASA Data Products as Input: Yes

Being Investigated for Use of NASA Data Products as Input: No

Website: www.ecco-group.org

Model Partners


· Massachusetts Institute of Technology

Scripps Institution of Oceanography, Univ. California San Diego

Jet Propulsion Laboratory, California Institute of Technology

Notes:

Information Last Updated: 8/30/2004

Ocean State Estimation

- · 3-D ocean temperature field
- 3-D ocean salinity field
- 3-D ocean velocity components
- Sea surface height
- Ocean bottom pressure
- 3-D mixing tensor

GFDL FMS B-grid Atmosphere

Purpose: B-Grid is a hydrostatic finite difference model on a staggered Arakawa B grid and hybrid sigma/pressure vertical coordinate. Its purpose is to serve as an atmospheric general circulation model, which can be used as a component of coupled earth-system models.

INPUTS

- Aerosol distribution
- Landcover Type
- Sea ice concentration
- Sea surface temperature
- Soil descriptionOUTPUTS
- Column burden of individual aerosol species
- · Individual aerosol concentration
- Absorption
- Surface geopotential
- Atmospheric temperature
- Atmospheric pressure
- Precipitation rate
- · Total precipital water
- Wind surface stress
- Geopotential height
- Humidity
- Cloud cover
- Wind velocity
- Surface heat and moisture fluxes
- Water vapor mixing ratio
- · stratospheric ozone and related trace gases
- Solar flux
- Vegetation description

Model Platforms

- SGI IRIX64
- SGI Altix
- Beowulf type cluster

Program Size: 220,000 lines of code

Run Time: 4.1 model years/day (45 pes, Irix), 5.2 years/day

(45 pes, Altix), 1.8 years/day (30pes, Beowulf)

Resolution Temporal: 30 min

Vertical: 24 levels (variable resolution)

Horizontal: 2.5 long x 2 lat

Range

Temporal: 1860-2300

Vertical: surface - 3.5 hPa

Horizontal: global

Access to model product: http://nomads.gfdl.noaa.gov (on or about 10 December 2004, all IPCC PCMDI data

will be available)

Validation: Geophysical Fluid Dynamics Laboratory Global Atmospheiric Model Development Team (2004,

J. Climate), in press.

Config Control: am2p13 POC: Venkatramani Balaji

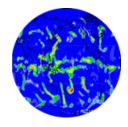
Affiliation: Geophysical Fluid Dynamics Laboratory

Email Address: vb@gfdl.noaa.gov, balaji@princeton.edu

Phone #: 609-452-6516 Funding: NASA (ESMF) Contract #: CAN-00-OÉS-01

Contract Name: Earth System Modeling Framework (ESMF)

Past Funding:


Currently Use NASA Data Products as Input: No

Being Investigated for Use of NASA Data Products as Input: No

Website: http://www.gfdl.noaa.gov/~fms

Model Partners

Notes:

Atmospheric Science and Climate Research

OUTPUTS

- · Column burden of individual aerosol species
- Individual aerosol concentration
- Absorption
- Surface geopotential
- Atmospheric temperature
- Atmospheric pressure
- Precipitation rate
- Total precipital water
- Wind surface stress
- Geopotential height
- Humidity
- Cloud cover
- · Wind velocity
- Surface heat and moisture fluxes
- Water vapor mixing ratio
- stratospheric ozone and related

trace gases

GFDL FMS HIM Ocean

Purpose:

INPUTS Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal:

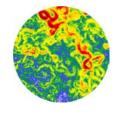
Access to model product:

Validation: Config Control: POC:

Vertical: Horizontal:

Affiliation: Email Address:

Phone #: Funding: Contract #: Contract Name:


Past Funding: Currently Use NASA Data Products as Input: No

Being Investigated for Use of NASA Data Products as Input: No Website:

Model Partners

Notes:

Information Last Updated:

Oceanographic and Climate Research

GFDL MOM4 Ocean

Purpose: The Modular Ocean Model (MOM) is a numerical representation of the ocean's hydrostatic primitive equations, and it is designed primarily as a tool for studying the global ocean climate system. It is developed and supported by researchers at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL), with contributions also provided by researchers worldwide.

INPUTS

- chlorophyll concentrations from the SeaWiFS satellite for the period 1999-2001
- NOAA National Oceanographic Data Center (NODC)

Model Platforms

- SGI IRIX64
- Intel Fotran Compiler
- IBM
- NEC

Program Size: source code: 7.5 megabytes

Run Time: simplest test case, 6 processors: 4.7 sec for

10 model days

Resolution

Temporal: varies, typically from 7200 to 10800 seconds

Vertical: varies, up to 50 vertical levels Horizontal: varies between 1 and 3 degress

Range

Temporal: from 1 days to hundreds of years

Vertical: up to 5500 meter depth

Horizontal: global

Access to model product:

https://fms.gfdl.noaa.gov/account/register.php

Validation: MOM4 has been used in GFDL IPCC coupled runs

and other institutions

Config Control: latest release is mom4p0c (as of 9/17/2004)

POC: Giang Nong

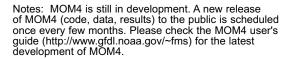
Affiliation: Geophysical Fluid Dynamics Laboratory

Email Address: Giang.Nong@noaa.gov

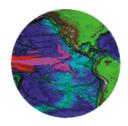
Phone #: 609-452-6578

Funding: NOAA, NASA (ESMF) Contract #: CAN-00-OES-01

Contract Name: Earth System Modeling Framework (ESMF)


Past Funding:

Currently Use NASA Data Products as Input: Yes


Being Investigated for Use of NASA Data Products as Input: No

Website: http://www.gfdl.noaa.gov/~fms

Model Partners

Information Last Updated: 10/19/2004

Ocean Circulation Model

- 3-D ocean temperature field
- 3-D ocean salinity field
- 3-D ocean velocity components
- Sea surface height
- Sea surface temperature
- Ocean bottom pressure
 Sea surface salinity
- Sea salt flux
- Ocean surface current

GMAO Ocean

Purpose: The Poseidon Quasi-isopycnal Ocean Model provides 3-D ocean salinity field, temperature field, 3-D ocean velocity components and sea surface height predictions for use in global ocean state seasonal forecasts, ocean data assimilation, and ocean process studies for short-term climate variability.

INPUTS

- ocean bottom topography
- · Surface momentum, heat flux and fresh water forcing products

Model Platforms

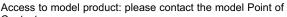
- HP Compaq

Program Size: 5.4MB

Run Time: 20 mins wall clock for 1 month simulation on 64 PE's for V4

Resolution

Temporal: monthly means


Vertical: 27 layers for V4, 34 layers for V5 Horizontal: 1/3 deg. latitude X 5/8 deg. longitude

Range

Temporal: 1981 to present

Vertical: upper 1500 m for V4; full ocean depth for V5

Horizontal: South Pole to 72 deg. N

Contact

Validation: Borovikov, A, M.M. Rienecker and P.S. Schopf, J.

Climate, V14, 2624-2641, 2001

Config Control: V4 and V5, the latter with full bottom topography

POC: Michele Rienecker

Affiliation: NASA

Email Address: Michele.Rienecker@nasa.gov

Phone #: 301-614-6142

Funding: NASA

Contract #: RTOP 622-24-47

Contract Name: Past Funding:

Currently Use NASA Data Products as Input: Yes

Being Investigated for Use of NASA Data Products as Input: Yes Website: http://nsipp.gsfc.nasa.gov/research/ocean/ocean_descr.html

Model Partners

· George Mason University

Notes:

Information Last Updated: 5/10/2004

Ocean Model

- 3-D ocean temperature field
- 3-D ocean salinity field
- 3-D ocean velocity components
- Sea surface height

LANL CICE

Purpose: to represent the thermodynamic and dynamic effects of sea ice in global climate modeling systems, for both short- and long-term studies, and at low or high resolution

INPUTS

- Cloud fraction
- Near-surface air temperature
- Near-surface specific humidity
- Near-surface wind
- Precipitation
- Sea surface salinity
- Sea surface température
- Solar flux

Model Platforms

- Linux
- IRIX64
- AIX
- Unicos

Program Size: 17 MB including input files and documentation Run Time: 1.5 min/simulated month for 3 degree global configuration

Resolution

Temporal: varies (typically 0.5 to 4 hours)

Vertical: varies (typically 4 layers ice + 1 layer snow) Horizontal: varies (0.1 deg to 3 deg or more); includes multiple-category ice thickness distribution (subgrid)

Range

Temporal: unlimited Vertical: unconstrained Horizontal: global

Access to model product: Source code available via the CICE website at http://climate.lanl.gov/Models/CICE/index.htm. Validation: eg., Hunke and Ackley (J. Geophys. Res. 106,

p 22,373, 2001). See also model documentation included with release and CCSM publications.

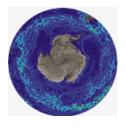
Config Control: CICE v3.1 POC: Elizabeth Hunke

Affiliation: Los Alamos National Laboratory

Email Address: eclare@lanl.gov Phone #: 505-665-9852

Funding: NASA (ESMF)
Contract #: CAN-00-OES-01

Contract Name: Earth System Modeling Framework


Past Funding:

Currently Use NASA Data Products as Input: No

Being Investigated for Use of NASA Data Products as Input: No

Website: http://climate.lanl.gov/Models/CICE/index.htm

Model Partners

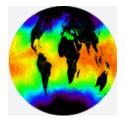
Sea Ice Model

OUTPUTS

- · Snow depth
- Sea ice area fraction
- Sea ice thickness
- Sea ice temperature
- Sea ice velocity
- Surface stresses
- · Heat fluxes
- · Fresh water fluxes
- · Mass fluxes
- · Sea ice internal stresses
- Sea ice deformation

Notes: NASA data products used for model validation. Closely associated with sea ice component of NCAR Community Climate System Model (CCSM/CSIM).

Information Last Updated: 12/6/2004


LANL HYPOP

Purpose:

INPUTS

Vertical: Horizontal:

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal:

Hybrid Global Circulation Model

OUTPUTS

Access to model product:

Validation: Config Control: POC:

Affiliation: Email Address:

Phone #: Funding: Contract #: Contract Name: Past Funding:

Currently Use NASA Data Products as Input: No Being Investigated for Use of NASA Data Products as

Input: No Website: Model Partners

Notes:

Information Last Updated:

LANL POP Ocean

Purpose: The POP model is used for simulating the global ocean circulation (particularly for use in climate system models), high-resolution eddy resolving simulations, and ocean biogeochemistry. POP is the ocean component of the Community Climate System Model (CCSM).

INPUTS

- Freshwater forcing products
- Ocean bottom topography
- Surface heat flux
- Surface incident longwave radiation
- Surface incident shortwave radiation
- Surface momentum
- LANL CICE / ice fields in coupled model
- NCAR CAM / Surface fields in coupled model

Model Platforms

- AIX
- IRIX64 - OSF1
- Solaris
- Linux.pgi
- Linux.lahev

Program Size: Approx. 50,000 lines of code

Run Time: For 1-degree resolution: 10 simulated years/CPU

day on 16 processors of SGI Altix

Resolution

Temporal: Typically 1 hour

Vertical: Typically 40 vertical levels

Horizontal: Typically 1 degree (100 km)

Range

Temporal: 7 minutes to 1 hour

Vertical: Up to 40 vertical levels

Horizontal: 0.1 degree (10 km) to 1 degree (100 km)

Access to model product: Personal contact; also soon on Earth System Grid (https://www.earthsystemgrid.org/). Validation: Smith, RD, ME Maltrud, FO Bryan, MW Hecht, 2000:

Numerical simulation of the North Atlantic Ocean at 1/10 degrees.

J. Phys. Oceanogr. 30,1532-61. Config Control: Version 2.0.1

POC: Phil Jones Affiliation: I ANI

Email Address: pwjones@lanl.gov

Phone #: 505-667-6387

Funding: DOE (CCPP, SciDAC), NASA (ESMF)

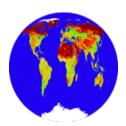
Contract #: CAN-00-OES-01

Contract Name: Earth System Modeling Framework

Past Funding:

Currently Use NASA Data Products as Input: No

Being Investigated for Use of NASA Data Products as Input: No


Website: http://climate.lanl.gov/Models/POP/index.htm

Model Partners

- NCAR
- Naval Postgraduate School (NPS)

Notes:

Information Last Updated: 2/9/2005

Global Ocean Circulation Model

- 3-D ocean temperature field
- 3-D ocean salinity field
- 3-D ocean velocity components
- · Sea surface height
- Sea surface temperature
- 3-D mixing tensor
- Sea surface salinity
- · Sea salt flux
- Sea ice melting flux
- Ocean surface current

MITgcm Atmosphere

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical:

Access to model product:

Validation: Config Control:

Horizontal:

POC: Affiliation:

Email Address:

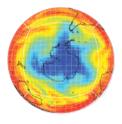
Phone #:

Funding: Contract #:

Contract Name:

Past Funding:

Currently Use NASA Data Products as Input: No


Being Investigated for Use of NASA Data Products as

Input: No Website:

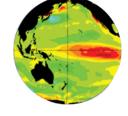
Model Partners

Notes:

Information Last Updated:

Atmosphere Fluid Model

OUTPUTS


----WAITING ON INPUT----

MITgcm Ocean

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical:

Ocean Fluid Model

Access to model product:

Validation:

Horizontal:

Config Control:

POC: Affiliation:

Email Address: Phone #:

Funding:

Contract #:

Contract Name: Past Funding:

Currently Use NASA Data Products as Input: No

Being Investigated for Use of NASA Data Products as

Input: No

Website:

Model Partners

OUTPUTS

Notes:

Information Last Updated:

NCAR CAM

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical:

Validation:

Horizontal:

Config Control:

POC: Affiliation:

Email Address:

Phone #:

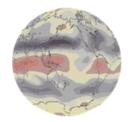
Funding: Contract #:

Contract Name:

Past Funding:

Currently Use NASA Data Products as Input: No

Being Investigated for Use of NASA Data Products as


Input: No

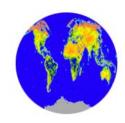
Website:

Model Partners

Information Last Updated:

Global Atmosphere Model

OUTPUTS


----WAITING ON INPUT----

NCAR CLM

Purpose: The Community Land Model is designed for coupling to atmospheric numerical models to study land-atmosphere interactions. It simulates energy, moisture, and momentum fluxes between land and atmosphere, the hydrologic cycle, and soil temperature. It links photosynthesis, transpiration, and stomatal conductance and simulates the terrestrial carbon cycle and vegetation dynamics. The model has a river routing scheme to transport runoff to the oceans.

INPUTS

- Digital Elevation Model
- Meteorological forcing (from atmospheric model, or reanalysis, or obs. network, etc.)
- Soil Hydraulic Properties
- · Soil Physical properties
- vegetation and soil description
- MODIS / MOD 12Q1: Land Cover Classification
- MODIS / MOD15: Leaf Area Index and Fraction of Photosynthetically Active Radiation

Energy, Water, Carbon Fluxes

Model Platforms

- IBM SP (AIX)
- CRAY X1 (Unicos)
- INTEL (Linux)
- NEC SX6 (Super-UX)

Program Size: 54.000 lines of code

Run Time: 1.2 seconds per day for a global 2.8 degree grid on

bluesky (32 processors) at NCAR Resolution

Temporal: Time step depends on host atmospheric model, but is

generally 20-30 minutes

Vertical: 10 soil layers to a depth of 3-4 meters

Horizontal: Global grid (e.g., 2.8 degrees), regional grid (e.g., 10

km), single point

Range

Temporal: Past, present, future climates

Vertical: 10 soil layers to a depth of 3-4 meters

Horizontal: Single column to global grid

Access to model product: Community Climate System Model

(CCSM) control runs can be found at: http://www.cgd.ucar.edu/csm/

Validation: A full list of publications is found at the CLM website

Config Control: Community Land Model (CLM 3.0)

POC: Sam Levis

Affiliation: National Center for Atmospheric Research

Email Address: slevis@ucar.edu

Phone #: 303-497-1627

Funding: NASA, NSS, DOE, others

Contract #: NASA ESMF, IDS, LCLUC, Terrestrial Ecology Programs

Contract Name: Past Funding:

Currently Use NASA Data Products as Input: Yes

Being Investigated for Use of NASA Data Products as Input: No

Website: http://www.cgd.ucar.edu/tss/clm/

Model Partners

- CCSM Land Model Working Group
- LDAS, GLDAS

Notes:

Information Last Updated: 8/30/2004

- · Soil moisture Surface temperature
- Surface evaporation
- Surface albedo
- Surface roughness
- Surface temperature change rate
- · Surface type
- Water balance
- Energy balance
- Runoff
- Soil Temperature
- Latent heat flux
- · Ground heat flux
- Evapotranspiration
- Evaporation
- Transpiration
- Infiltration
- Land NPP
- · Soil trace gas

NCEP Analysis

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical:

Validation:

Horizontal:

Config Control:

POC:

Affiliation:

Email Address:

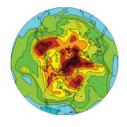
Phone #:

Funding:

Contract #:

Contract Name: Past Funding:

Currently Use NASA Data Products as Input: No


Being Investigated for Use of NASA Data Products as

Input: No Website:

Model Partners

Notes:

Information Last Updated:

Weather and Seasonal

NCEP Atmosphere

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical:

Access to model product:

Validation:

Horizontal:

Config Control:

POC:

Affiliation:

Email Address:

Phone #:

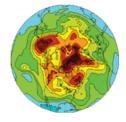
Funding:

Contract #:

Contract Name:

Past Funding:

Currently Use NASA Data Products as Input: No


Being Investigated for Use of NASA Data Products as Input: No

Website:

Model Partners

Notes:

InformationI Last Updated:

Weather and Seasonal **Predictions**

OUTPUTS

----WAITING ON INPUT----

UCLA AGCM

Purpose: This model is intended for research on numerical weather prediction and as a teaching tool on numerical methods and the general circulation of the atmosphere.

INPUTS

- analyzed/forecasted surface wind, SST and ice products
- · Boundary condititions for source gases specified by WMO
- CO emission inventory
- ground saturation
- Landcover Type
- Near surface CO2 concentration
- NOx emission inventory
- Sea surface temperatures/sea ice concentration
- skin temperature
- · snow depth/cover
- solar flux
- topographic data (DEMs)
- vegetation and soil description
- SeaWinds / SeaWinds: Polar Sea Ice Grids

Model Platforms

- SGI Origin 2000, 3000 Cray YMP, T3D SUN Workstations

- HP Workstations, OSF, LINUX

- IBM SP2, SP3, Workstations Program Size: More than 30,000 lines of code

Run Time: 34 sec / simulated day for 512 nodes on an SGI 3000 Resolution

Temporal: dynamics: 180 seconds, physics: 60 minute

Vertical: 1 mb, 15, 18, 29,32 levels Horizontal: 2.4 x 3.0 degrees

Range

Temporal: dynamics 30-450 seconds, physics: 10-60 minutes

Vertical: 1.0 or 100 mb, 9 thru 32 levels

Horizontal: 1.0 thru 5.0 degrees

Access to model product: esm-a.atmos.ucla.edu/~vacs Validation: Mechoso, C. R., J.-Y. Yu and A. Arakawa, 2000: "A Coupled GCM Pilgrimage: From Climate Catastrophe to ENSO

Simulations.'

Config Control: UCLA Model Version 7.2 POC: Professor Carlos Roberto Mechoso

Affiliation: University of California at Los Angeles Email Address: mechoso@atmos.ucla.edu

Phone #: 310-825-3057

Funding: NASA, Earth System Modeling Framework (ESMF) Contract #: CAN-00-OES-01

Contract Name: Past Funding:

Currently Use NASA Data Products as Input: No

Being Investigated for Use of NASA Data Products as Input: No

Website: http://www.atmos.ucla.edu/~mechoso

Model Partners

Notes: Validation paper featured in General Circulation Model Development: Past, Present and Future Proceedings of a Symposium in Honor of Professor Akio Arakawa. D. A. Randall. Ed., Academic Press, 539-575.

Information Last Updated: 12/6/2004

Finite Difference Global Atmosphere

- Single scattering albedo
- Radiative forcing
- Heating / Cooling Rates
- Surface geopotential
- Atmospheric temperature
- Sensible heat flux
- Atmospheric pressure
- Precipitation rate
- Total precipital water
- · Soil moisture
- Wind surface stress
- Surface temperature
- Geopotential height
- · Humidity
- Surface evaporation
- Radiation flux
- Surface albedo
- Surface roughness
- · Boundary layer height
- Cloud cover
- · Cloud optical depth
- Ozone concentration
- Surface type
- Wind velocity
- surface radiation budget
- Energy balance
- Soil Temperature
- · Ground heat flux
- Evaporation Zonal wind
- · Meridional wind
- Temperature
- Pressure
- Ozone
- Soil trace gas
- Surface values, fluxes. constituent amounts
- Sea surface temperature
- Surface heat and moisture fluxes
- Water vapor mixing ratio
- Surface upward heat flux (air)
- Surface upward heat flux (water)
- full suite of middle atmosphere chemical species
- · stratospheric ozone and related trace gases

Purpose: The Weather Research and Forecast (WRF) is a mesoscale forecast model and assimilation system designed to advance the understanding and prediction of mesoscale precipitation systems to promote ties between the research and operational forecasting communities. WRF is used particularly for treatment of convection and mesoscale precipitation. It is intended for applications with emphasis on horizontal grids of 1-10km. It is expected to replace existing forecast models such as the MM5 at the Pennsylvania State University/National Center for Atmospheric Research, the ETA model at the National Centers for Environmental Prediction, and the RUC system at the Forecast Systems Laboratory.

INPUTS

- · Meteorological forcing
- Near surface air temperature
- Near surface wind
- SEA SURFACE TEMPERATURES
- skin temperature
- snow depth/cover
- · Soil Hydraulic Properties
- Soil Physical properties
- Surface pressure
- topographic data (DEMs)
- vegetation and soil description
- Radiosonde / Atmospheric Variables
- Temperature Lidar / Temperature Air Temp & RH Probe / Temperature and RH profiles
- FSL LAPS / Atmosphere/Land
- WRF 3D VAR / Atmospheric Analyses
 RUC / Atmospheric/land variables
- NCEP Analysis / Atmospheric/land variables

Model Platforms

- IRM
- SUN
- I inux
- SGI Dec Alpha

Program Size: More than 100,000

Run Time: 1 hour for 48 hour simulation using parameters in note 1

Resolution

Temporal: Seconds to minutes

Vertical: 500 m

Horizontal: 1 to 150 km Range

Temporal: hours to years

Vertical: 2 mb

Horizontal: Regional (1000's of km)

Access to model product: Available in standard binary output file.

Others can be extracted via code modifications.

Validation: Multiple (http://wrf-model.org/documentation_main.html) Config Control: Version WRF V2.0.3.1 (released November 2004)

POC: NCAR (http://box.mmm.ucar.edu/wrf/users/)

Affiliation: UCAR/NCAR

Email Address: wrfhelp@ucar.edu

Phone #: NA

Funding: Multiple Sources (NOAA, AWFA, NSF, NAVY, NASA)

Contract #: CAN-00-OES-01

Contract Name: Earth System Modeling Framework (ESMF)

Past Funding:

Currently Use NASA Data Products as Input: No

Being Investigated for Use of NASA Data Products as Input: Yes

Website: http://wrf-model.org/

Model Partners

Notes: 1. Run time given is for a simulation with single grid of dimension 150 x 150 x 28 [y.x.z] grid at 12 km horizontal resolution with a time step of 75 s on a Linux cluster configures with 38 Pentium III 1.0 GHz processors interconnected via a Myrinet fiber optic backbone.

Information Last Updated: 2/9/2005

Weather Research and **Forecast Model**

- Total aerosol concentration
- · 3-D distribution of each aerosol type
- Absorption
- Single scattering albedo
- · Radiative forcing
- Heating / Cooling Rates
- Surface geopotential
- Atmospheric temperature
- · Sensible heat flux
- Atmospheric pressure
- Precipitation rate
- · Total precipital water
- Soil moisture
- Wind surface stress
- · Surface temperature
- Geopotential height
- Humidity
- Surface evaporation
- Radiation flux
- Surface albedo
- · Friction velocity
- · Surface roughness
- · Boundary layer height
- · Surface temperature change rate
- Snow depth
- Cloud cover
- · Cloud optical depth
- Wind velocity change rate
- · Humidity change rate
- Eddy diffusivity
- Cloud mass flux
- Atmospheric temperature change rate
- Surface type
- Wind velocity
- Water balance
- surface radiation budget
- Energy balance
- Runoff
- Soil Temperature
- Snow water equivalent Latent heat flux
- · Ground heat flux
- Evapotranspiration
- Evaporation Transpiration
- Infiltration
- I and NPP
- Sea surface temperature
- Surface heat and moisture fluxes
- · Water vapor mixing ratio Snowfall amount
- Momentum flux

NASA-Affiliated Earth-Sun Science Models & Analysis Systems

CASA

Purpose: To model global terrestrial greenhouse gas emissions

INPUTS

MODIS / MOD12: Land Cover Type

MODIS / MOD15: Leaf Area Index and Fraction of Photosynthetically Active Radiation

NCEP Analysis / All model inputs listed below

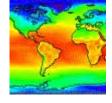
Model Platforms

- Unix

Program Size: 4 GB limit Run Time: 8-12 hours Resolution

Temporal: Monthly

Vertical: 0


Horizontal: 8 kilometer

Range

Temporal: 1982-2003

Vertical: 0

Horizontal: global

Net Ecosystem Production

Access to model product: http://geo.arc.nasa.gov/sge/casa/

Validation: http://geo.arc.nasa.gov/sge/casa/Config Control: Current version V11

POC: Christopher Potter Affiliation: NASA Ames

Email Address: cpotter@mail.arc.nasa.gov

Phone #: 650-604-6164 Funding: NASA OES Contract #: 21-291-01-91 Contract Name:

Past Funding: 21-291-01-91 Currently Use NASA Data Products as Input: Yes

Being Investigated for Use of NASA Data Products as Input: No

Website: http://geo.arc.nasa.gov/sge/casa/

Model Partners

· California State University

Notes:

Information Last Updated:

- Surface type
- Water balance
- Evapotranspiration
- Land NPP
- · Soil trace gas

CM-4

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical: Horizontal:

Access to model product:

Validation:

Config Control:

POC:

Affiliation:

Email Address:

Phone #:

Funding:

Contract #:

Contract Name: Past Funding:

Currently Use NASA Data Products as Input: No

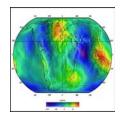
Being Investigated for Use of NASA Data Products as Input: No

Website:

Model Partners

Notes:

Information Last Updated:


Compressive Modeling of the Geomagnetic Field

EGM-96

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical: Horizontal:

Access to model product:

Validation:

Config Control:

POC:

Affiliation:

Email Address:

Phone #:

Funding:

Contract #:

Contract Name:

Past Funding:

Currently Use NASA Data Products as Input: No

Being Investigated for Use of NASA Data Products as Input: No

Website:

Model Partners

Notes:

Information Last Updated:

GEOS-4 AGCM

Purpose: Atmospheric component of GEOS-4 assimilation and forecast system. GEOS-4 AGCM is the atmospheric model used at GSFC for data assimilation and for numerical weather prediction. The model can also be used for climate applications and its climate behavior has been well documented in decadal simulations.

INPUTS

- · GISS Model III / Atmospheric pressure
- GISS Model III / Humidity
 GISS Model III / Wind velocity

Model Platforms

- SGI Origin
- HP Compaq

Program Size: 5 Mb source code; 4.05 GB minimum RAM for

configuration in Note 1

Run Time: 166 simulated days per day with parameters listed

in Note 1. Resolution Temporal: 30 min Vertical: 55 levels

Horizontal: 50 km to 200 km

Range

Temporal: Days to decadal Vertical: surface to 60km

Horizontal: Global

Access to model product: Results at web site (http://gmao.gsfc.nasa.gov) or contact POA. Validation: http://gmao.gsfc.nasa.gov

Config Control: GEOS-4.0.3

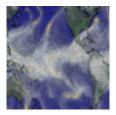
POC: Max J Suarez Affiliation: GMAO

Email Address: max.j.suarez@nasa.gov

Phone #: (301) 614-5355 Funding: NASA Hq ESE Contract #: RTOP-621-85-01 Contract Name:

Past Funding:

Currently Use NASA Data Products as Input: Yes


Being Investigated for Use of NASA Data Products as Input: Yes

Website: http://gmao.gsfc.nasa.gov

Model Partners

Notes: Note 1: Model resolution: 1 deg x 1.25 deg x 55 vertical lavers with 32 SGI processors

Information Last Updated: 8/30/2004

Atmospheric Forecast and Assimilation

- Surface geopotential
- Atmospheric temperature
- Atmospheric pressure
- Precipitation rate Total precipital water
- Soil moisture
- Wind surface stress
- Surface temperature
- Geopotential height
- Humidity
- Radiation flux
- Surface roughness
- · Boundary layer height
- Surface temperature change rate
- Snow depth
- Cloud cover
- · Cloud optical depth
- · Wind velocity change rate
- · Humidity change rate
- Eddv diffusivity
- Cloud mass flux
- Atmospheric temperature change rate
- Surface type
- · Wind velocity
- Surface heat and moisture fluxes

GISS ModelE

Purpose: ISS ModelE is multi-purpose flexible tool to examine climate change and interactions over a wide range of space and time-scales. Multiple resolutions, different stratospheric and ocean treatments, and varied tracer submodules (including atmospheric chemistry, aerosols (including sulfates, nitrates, carbonaceous, dust and sea salt) can be optionally included as required. This model is being used for the GISS contribution to the upcoming IPCC 4th Assessment Report.

Earth System

General Circulation

Model

INPUTS

- 3D aerosol distribution
- Landcover Type
- Sea surface temperatures/sea ice concentration
- TOA solar forcing
- topographic data (DEMs)
- vegetation and soil description
- SAGE II / Ozone

Model Platforms

- SGI
- IBM
- Linux
- Compaq

Program Size: 4x5x20L: 2.6 MB

Run Time: example: ~4 model years/day with parameters list-

ed in note 1 Resolution

Temporal: 30 minute physics time step (but can vary) Vertical: 12 to 53 atmospheric levels, variable ocean

Horizontal: 8x10, 4x5, 2x2.5 Range

Temporal: Years to Centuries

Vertical: surface to 0.1mb and optionally up to 0.002mb

Horizontal: Global

Access to model product:

http://www.giss.nasa.gov/tools/modelE

Validation: Schmidt et al (in preparation - see website)

Config Control: ModelE1 POC: Gavin Schmidt

Affiliation: NASA Goddard Institute for Space Studies

Email Address: gschmidt@giss.nasa.gov Phone #: 212 678 5627

Funding: NASA

Contract #: RTOP 622-24-01-30

Contract Name:

Past Funding: Multiple awards to present

Currently Use NASA Data Products as Input: Yes Being Investigated for Use of NASA Data Products as

Input: No

Website: http://www.giss.nasa.gov/tools/modelE

Model Partners

Notes: This is the official GISS successor to the GISS Model II, Model II and Model III series of models incoporating much new physics and tracer sub-modules, more user friendly interfaces and more modern coding practice (including support for OpenMP, MPI and ESMF (soon)).** Note 1 - Model Parameters for example run time: using the AGCM at 4x5x20L resolution, on a Compaq, using 4 processors

Information Last Updated: 8/30/2004

- · Optical thickness of individual and total aerosols
- Column burden of individual aerosol species
- Total aerosol concentration
- · Individual aerosol concentration
- 3-D distribution of each aerosol type
- Absorption
- Heating / Cooling Rates
- 3-D ocean temperature field
- · 3-D ocean salinity field
- 3-D ocean velocity components
- Sea surface height
- Surface geopotential
- Atmospheric temperature Sensible heat flux
- Atmospheric pressure
- Precipitation rate
- Total precipital water
- Soil moisture
- Wind surface stress
- Surface temperature
- Geopotential height
- Humidity
- Surface evaporation
- Surface albedo
- Friction velocity Boundary laver height
- Surface temperature change rate
- · Snow depth
- Cloud cover
- · Cloud optical depth
- · Wind velocity change rate
- Humidity change rate Ozone concentration
- Atmospheric temperature change rate
- · Wind velocity
- Water balance
- · surface radiation budget
- Energy balance
- Runoff
- Soil Temperature
- Snow water equivalent
- Latent heat flux
- · Ground heat flux
- Evapotranspiration
- Evaporation
- Transpiration
- Sea surface temperature
- Surface heat and moisture fluxes
- Ocean bottom pressure
- 3-D mixing tensor
- Aerosol radiative forcing
- Water vapor mixing ratio
- Snowfall amount
- Sea surface salinity · Sea ice area fraction
- Stress at sea ice base
- Momentum flux
- · Sea ice melting flux
- Sea ice thickness
- · Sea ice temperature
- · Sea ice velocity

GISS II

Purpose: To examine the effects of multiple radiative forcings on long term climate

INPUTS

- · 3D aerosol distribution
- Sea surface temperatures/sea ice concentration
- TOA solar forcing
- topographic data (DEMs)
- vegetation and soil description
- SAGE II / Ozone

Model Platforms

- IBM - SGI
- Program Size: 4x5x12L, 7.6 MB Run Time: single processor, 1 yr/day
- Resolution Temporal: one hour Vertical: 12 lavers
- Horizontal: 4x5 Range
- Temporal: vears to a century Vertical: surface to 10mb Horizontal: Global

POC: Reto Ruedy Affiliation: SGT Inc.

Email Address: rruedy@giss.nasa.gov

Phone #: 212 678 5600

Funding: NASA

Contract #: RTOP 622-24-01-30

Contract Name:

Past Funding: To 2003

Currently Use NASA Data Products as Input: No

Being Investigated for Use of NASA Data Products as Input: No

Website: http://www.giss.nasa.gov/data/

Model Partners

Global Forcings

OUTPUTS

- Absorption
- Heating / Cooling Rates
- Surface geopotential
- Atmospheric temperature
- Atmospheric pressure Precipitation rate
- Total precipital water
- Wind surface stress
- Geopotential height
- Humidity
- Boundary layer height Cloud cover
- Cloud optical depth
- Wind velocity change rate
- Cloud mass flux
- Wind velocity
- Surface heat and moisture fluxes
- · Water vapor mixing ratio
- Momentum flux

Notes: Data from atmospheric runs including multiple radiative forcings are still available from the SI2000 version of the model (see website), but the model code itself is no longer officially supported. Please see GISS ModelE for more up-to-date model results and capabilities.

Information Last Updated: 8/30/2004

GISS III

Purpose: This model is intended for research requiring finer vertical and horizontal resolution than is generally employed in the GISS climate runs. It is an extension of Model II' (which was an extension of Model II), incorporates the GISS Middle Atmosphere Model and uses some of the new physics routines in Model E (the latest model for primarily tropospheric climate change experiments). It routinely runs with a top at the mesopause, so is appropriate for stratospheric experiments as well as tropospheric ones.

INPUTS

- · 3D aerosol distribution
- · Radiation, temperature, precip data for validation
- SEA SURFACE TEMPERATURES

- SGI-TYPE SHARED MEMORY SYSTEM

Program Size: 4x5x53layer: 328 MB; 2X2.5X53layer: 678 MB Run Time: (4x5x53): 2.25min/day; (2x2.5x53): 20.2 min/day; on Origin3000@400MHz, 24proc

Resolution

Temporal: 1 hour

Vertical: 500m-1km (53, 102 level versions)

Horizontal: 4°x5° or 2°x2.5°

Range

Temporal: 50 year simulations Vertical: Surface to 85km

Horizontal: Global

Access to model product: Contact model owner

Validation: NOT YET Config Control: NA

POC: David Rind; Jeff Jonas

Affiliation: NASA GISS/Columbia University

Email Address: drind@giss.nasa.gov; jonas@giss.nasa.gov Phone #: 212-678-5593; 212-678-5532

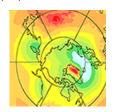
Funding: NASA; Columbia University

Contract #: 622-59-04-30

Contract Name:

Past Funding: MULTIPLE YEAR FUNDING HISTORY

Currently Use NASA Data Products as Input: Yes


Being Investigated for Use of NASA Data Products as Input: Yes

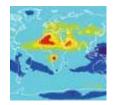
Website: planned for the future

Model Partners

Notes: Higher resolution models for understanding atmospheric dynamical changes and regional responses related to climate change; also tropospheric and stratospheric tracers and atmospheric chemistry changes associated with altered climate

Information Last Updated:

General Atmospheric and Ocean Circulation Model


- · Optical thickness of individual and total aerosols
- Absorption
- Single scattering albedo
- Heating / Cooling Rates
- Surface geopotential Atmospheric temperature
- Atmospheric pressure
- Precipitation rate
- Total precipital water
- Wind surface stress
- Geopotential height
- Humidity
- Friction velocity
- · Boundary layer height
- Cloud cover
- Cloud optical depth
- Wind velocity change rate
- Humidity change rate
- Eddy diffusivity
- Cloud mass flux
- Ozone concentration
- Atmospheric temperature
- change rate
- Wind velocity

GSFC Aerosol Assimilation System

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical:

Access to model product:

Validation:

Horizontal:

Config Control:

POC:

Affiliation:

Email Address:

Phone #:

Funding:

Contract #: Contract Name:

Past Funding:

Currently Use NASA Data Products as Input: No

Being Investigated for Use of NASA Data Products as

Input: No Website:

Model Partners

Notes:

Information Last Updated:

OUTPUTS

GSFC Catchment LSM

Purpose: The Catchment LSM, designed to work with atmospheric GCMs, computes the energy and water balances at the earth's surface. It differs from more traditional land models in its explicit treatment of subgrid soil moisture variability and the impact of this variability on evaporation and runoff.

INPUTS

- Meteorological forcing (from atmospheric model, or reanalysis, or obs
 - network, etc.)
- topographic data (DEMs)
- vegetation and soil description

Model Platforms

- Anything, if run offline (unattached to GCM)
- HP Compaq (with AGCM)
- Program Size: ~4000 lines of code
- Run Time: ~6 sec/year/element, given a 1200 sec time step (alpha processor)
- Resolution
- Temporal: 20 minute (or shorter) time step
- Vertical: three soil moisture prognostic variables Horizontal: catchments of about 50 km on a side
- Range
- Temporal: Any time, given availability of boundary condition data
- Vertical: vegetation canopy to bedrock
- Horizontal: anywhere

Access to model product: Most products are distributed in the form of scientific papers or research reports that provide a description of results. Some side application products are distributed through the GSWP (Global Soil Wetness Project) mostly as meteorological resources.

Validation: Boone et al., J. Climate, 17, pp. 187-208, 2004

Config Control: n/a POC: Randal Koster

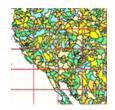
Affiliation: GMAO, NASA/GSFC

Email Address: randal.d.koster@nasa.gov

Phone #: 301-614-5781

Funding: NASA

Contract #: RTOP 51-622-33-88


Contract Name: Past Funding:

Currently Use NASA Data Products as Input: Yes

Being Investigated for Use of NASA Data Products as Input: No Website: http://nsipp.gsfc.nasa.gov/research/land/land_descr.html

Model Partners

Lamont-Doherty Earth Observatory

Impacts of soil moisture variability on surface fluxes

OUTPUTS

- Sensible heat flux
- Soil moisture
- Surface temperature
- Surface evaporation
- Radiation fluxSnow depth
- Water balance
- Water balance
- surface radiation budget

Notes:1. Reference 1: Journal of Geophysical Research, Vol. 105, No. D20, pgs. 24,809-24,822, Oct. 27, 2000

2. Reference 2: Journal of Geophysical Research, Vol. 105, No. D20, pgs. 24,823-24,838, Oct. 27, 2000. 3. NASA data products are not used as model inputs on a regular basis, however, they are occasionally used to outline a research project or define boundary conditions.

Information Last Updated: 8/30/2004

GSFC CEM

Purpose: The objective is to simulate clouds and cloud systems from various geographic locations that are generally convective in nature in order to: 1) produce a consistent cloud data base for algorithm developers and for large-scale modelers to improve their convective parameterizations, 2) study cloud processes (e.g. microphysical processes) and their interaction with radiation, aerosols, and land and ocean surface processes, 3) perform long term equilibrium state simulations in the tropics, 4) study cloud chemistry and transport, and 5) to serve as a super parameterization within a general circulation model (also known as a multiscale modeling framework or MMF).

INPUTS

- · Meteorological forcing (from atmospheric model, or reanalysis, or obs
- network, etc.)
- Radiosonde / Moisture
- Radiosonde / PressureRadiosonde / Temperature
- · Radiosonde / Wind
- · GMAO Atmospheric Analysis / Atmospheric pressure
- GMAO Atmospheric Analysis / Atmospheric temperature
- GMAO Atmospheric Analysis / Humidity
 GMAO Atmospheric Analysis / Wind velocity

Model Platforms

- Alpha SC on a Compag SC45
- SGI Altix 3000

Program Size: 44,000 lines of code Run Time: 860 s for a 4 h simulation using 64 CPUs, a 256x256x34 domain,

and a 10 s time step

Resolution

Temporal: 10 seconds or less

Vertical: stretched: 10 m to 1000 m

Horizontal: 250 m up to 2000 m

Temporal: 12 hours up to multi-week

Vertical: 0 up to 30 km (AGL)

Horizontal: up to several 1000 km

Access to model product: Contact Dr. Tao or Steve Lang via e-mail Validation: Tao, W.-K., and J. Simpson, 1993: The Goddard Cumulus Enemble Model. Part I: Model description. Terr., Atmos. and Oceanic Sci., 4, 35-72.

Config Control: GCE 3D MPI V1.0

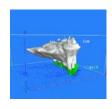
POC: Steve Lang

Affiliation: SSAI/NASA GSFC

Email Address: lang@agnes.gsfc.nasa.gov Phone #: 301-614-6331

Funding: NASA

Contract #: 621-15-42, 622-28-04-20, 622-28-03-20, 291-01-97 Contract Name: TRMM/GPM Precipitation Mission, Cumulus


Modeling.Parameterized Convective Processes

Past Funding: 621-30-07 (1993) Currently Use NASA Data Products as Input: No

Being Investigated for Use of NASA Data Products as Input: Yes

Website: None. Model Partners

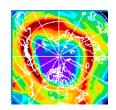
- University of MarylandUniversity of Virginia
- Columbia University
- University of New York--Albany
- Florida State University
- University of Washington
- Hebrew University of Jerusalem in Israel
- National Central University
- National Taiwan University
- · Austin College

Non-hydrostatic cloudresolving model

OUTPUTS

- Heating / Cooling Rates
- Atmospheric temperature
- Atmospheric pressure
- Precipitation rate
- Total precipital water
- Humidity
- Cloud cover
- · Wind velocity change rate
- · Humidity change rate
- · Cloud mass flux
- Atmospheric temperature change rate
- Wind velocity
- Surface heat and moisture
- · Water vapor mixing ratio
- Momentum flux

Notes: Several national and international universities and research institutions (listed under model partners) are using the GCE model and its results in their research. These professors and researchers are important partners because they can inform us about the model performance. References in addition to the one listed under validation information: Tao, W. Inform us about the model performance, receiverizes in addition to the one itsed under validation information. Tao, vv.K., J. Simpson, and S.-T. Soong, 1987: Statistical properties of a cloud ensemble: A numerical study. J. Atmos. Sci., 44,
3175-3187.
Simpson, J., and W.-K. Tao, 1993: The Goddard Cumulus Ensemble Model. Part II. Applications for
studying cloud precipitating processes and for NASA TRMM. Terr., Atmos. and Oceanic Sci., 4, 73-116. Tao, W.-K., J.
Simpson, D. Baker, S. Braun, M.-D. Chou, B. Ferrier, D. Johnson, A. Khain, S. Lang, B. Lynn, C.-L. Shie, D. Starr, C.-H.
Sui, Y. Wang and P. Wetzel, 2003: Microphysics, radiation and surface processes in a the Goddard Cumulus Ensemble
(GCE) model, Meteor. and Atmos. Phys., 82, 97-137. SBR>Tao, W.-K., 2003: Goddard Cumulus Ensemble (GCE) model,
Application for understanding precipitation processes AMS Monographs - Cloud Systems. Hurriganes and TRMM 1003-Application for understanding precipitation processes, AMS Monographs - Cloud Systems, Hurricanes and TRMM. 1003-138. Juang, H.M., W.-K. Tao, X. Zeng, C.-L. Shie and J. Simpson, 2004: A message passing interface implementation to a cloud-resolving model for massively parallel computing, Mon. Wea. Rev. (submitted).


Information Last Updated: 10/28/2004

GSFC CTM

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical:

Access to model product:

Validation:

Horizontal:

Config Control:

POC:

Affiliation:

Email Address: Phone #:

Funding:

Contract #:

Contract Name:

Past Funding:

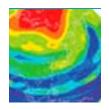
Currently Use NASA Data Products as Input: No Being Investigated for Use of NASA Data Products as

Input: No

Website: Model Partners

Notes:

Information Last Updated:


OUTPUTS

GSFC GMI

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical: Horizontal:

Access to model product:

Validation:

Config Control:

POC:

Affiliation:

Email Address:

Phone #:

Funding: Contract #:

Contract Name:

Past Funding:

Currently Use NASA Data Products as Input: No

Being Investigated for Use of NASA Data Products as Input: No

Website:

Model Partners

Notes:

Information Last Updated:

OUTPUTS

GSFC GOCART

Purpose: The GOCART model provides predicted values of a number of Earth System parameters (see model products below).

INPUTS

- MODIS / MOD04: Aerosol Product
- GEOS-4 AGCM / Atmospheric pressure
- GEOS-4 AGCM / Atmospheric temperature change rate
- GEOS-4 AGCM / Boundary layer height
- GEOS-4 AGCM / Cloud cover
- · GEOS-4 AGCM / Cloud optical depth
- GEOS-4 AGCM / Eddy diffusivity
- GEOS-4 AGCM / Humidity
- GEOS-4 AGCM / Precipitation rate
- GEOS-4 AGCM / Radiation flux
- · GEOS-4 AGCM / Soil moisture
- GEOS-4 AGCM / Surface roughness
 GEOS-4 AGCM / Surface temperature
- GEOS-4 AGCM / Surface type
- GEOS-4 AGCM / Wind velocity

- GSFC NCCS HP-Compaq Alpha Server SC45
- SGI Origin 3000
- Linux (future option)

Program Size: Approximately 300 M Words

Run Time: Example: 12 - 14 min CPU / day with the parameters listed in notes.

Resolution

Temporal: 15 minutes (interpolated) to 6 hour time steps

Vertical: 20 - 55 layers

Horizontal: 1 degree latitude X 1.25 degree longitude (planned to

beincreased)

Range

Temporal: 1980 - present (+ 5-day projection)

Vertical: Sea Level to 0.001 mbar

Horizontal: global

Access to model product:

http://code916.gsfc.nasa.gov/People/Chin/aot.html (or contact model

PÓC)

Validation: http://code916.gsfc.nasa.gov/People/Chin/jas.all.pdf Config Control: Version 3.13 as of 8/19/2003, Model is a research tool/configuration control process required prior to operational use

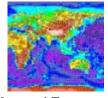
POC: Mian Chin

Affiliation: GSFC Code 916

Email Address: Mian.Chin-1@nasa.gov

Phone #: 301 614-6007

Funding: NASA


Contract #: 622-58-23, 622-44-01, 621-30-78

Contract Name: Past Funding:

Currently Use NASA Data Products as Input: Yes

Being Investigated for Use of NASA Data Products as Input: Yes Website: http://code916.gsfc.nasa.gov/People/Chin/aot.html

Model Partners

Aerosol Transport

OUTPUTS

- Dust emission
- Sea-salt emission
- Optical thickness of individual

total aerosols

- Column burden of individual aerosol species
- Total aerosol concentration
- Individual aerosol concentra-
- 3-D distribution of each aerosol type
 - Aerosol particle size
 - Absorption
 - Single scattering albedo
 - Heating / Cooling Rates
- Aerosol radiative forcing

Notes:1. Model parameters for example run time: Model resolution: 2 deg latitude x 2.5 deg longitude, 30 vertical layers. Time steps: 15 min for advection and cloud mixing, 1 hour for emission, chemistry, dry deposition, settling, wet deposition. Number of species (or groups): Dust (5), sea-salt (4), carbonaceous (4), sulfur (4), total 17

Information Last Updated: 8/30/2004

GSFC Ocean Biology

Purpose: To produce a realistic simulation of ocean biological and biogeochemical processes that can be related to ocean color observations from space and provide improved state and flux estimates. INPUTS

- MODIS / MOD04: Aerosol Product
- MODIS / MOD21: Chlorophyll a Pigment Concentration
- SeaWiFS / SeaWiFS Level 3 Monthly Data
- TOMS / TOMS: Ozone
- GMAO Ocean Analysis / 3-D ocean temperature field
- GMAO Atmospheric Analysis / Atmospheric pressure
- GSFC GOCART / Dust emission
- GMAO Atmospheric Analysis / Humidity
- GMAO Atmospheric Analysis / Wind velocity

Model Platforms

- halem

Program Size: 22000

Run Time: 1 hour per simulated month

Resolution Temporal: 1/2 hr

Vertical: 5 to 200 m

Horizontal: 1 1/4 Ion by 2/3 lat

Range

Temporal: years Vertical: 5000 m Horizontal: global

Access to model product: contact Model POC

Validation: Gregg, W.W., P. Ginoux, P.S. Schopf, and N.W. Casey,

2003. *See Note 1. Config Control: NA POC: Watson Gregg

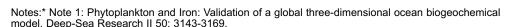
Affiliation: NASA/Global Modeling and Assimilation Office

Email Address: Watson.Gregg@nasa.gov

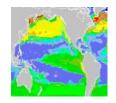
Phone #: (301) 614-5711 Funding: NASA

Contract #: 51-621-30-39

Contract Name: Development of an Ocean Biogeochemical EOS Assimilation Model (OBEAM)


Past Funding: 1991 to present, NASA Biogeochemistry Program

Currently Use NASA Data Products as Input: Yes


Being Investigated for Use of NASA Data Products as Input: No

Website:

Model Partners

Information Last Updated: 10/28/2004

Global ocean biology / biogeochemistry simulation

- chlorophyll
- primary production
- phytoplankton functional
- chlorophyll
- primary production
- phytoplankton functional groups
- carbon flux groups
- carbon flux

GSFC Ozone Assimilation System

Purpose: This global system assimilates ozone data from multiple satellite-borne sensors into a global three-dimensional stratosphere/troposphere model. The model includes detailed transport and parameterized chemistry processes. The assimilated ozone fields were used in studies of upper atmospheric waves, monitoring and evaluation of retrieved ozone data from satellite instruments, representation of ozone in the lower stratosphere, and evolution of polar ozone. Potential applications include: studies of

radiative feedback from ozone in atmospheric general circulation models (GCMs), use as first guess field in retrievals from various satellite instruments, and use in assimilation of radiances from infrared instruments (e.g. TOVS or AIRS). Assimilation of EOS Aura data
will provide tropospheric ozone columns and profiles that could potentially be used for air quality applications.

OMI / OMI OMTO3: Total Ozone

Assimilation System for Atmospheric Ozone Data

OUTPUTS

- ozone mixing ratio
- Total Ozone Čolumn

INPUTS

- MLS / ML2O3: Ozone (O3) Mixing Ratio
- SAGE II / Ozone SBUV-2 / ozone
- · MIPAS / ozone
- POAM III / ozone
- TOMS / TOMS: Ozone
- · HALOE / UARS HALOE Level 2 Data
- GMAO Atmospheric Analysis / Atmospheric pressure
- GMAO Atmospheric Analysis / Atmospheric temperature
- GMAO Atmospheric Analysis / Humidity
- GSFC 2D Model / ozone production and loss rates
- GEOS-CHEM / ozone production, loss and dry depositon
- GMAO Atmospheric Analysis / Wind velocity

Model Platforms

 GSFC SGI Origin (Dalev) Program Size: 15000 Run Time: 20 - 40 min

Resolution

Temporal: 15 min to 6 hours

Vertical: 36 levels

Horizontal: 1x1.5 deg to 2x2.5 deg

Range

Temporal: 1991 to present Vertical: surface to 60 km

Horizontal: global

Access to model product: http://gmao.gsfc.nasa.gov/research/ozone/ozone_assim.php Validation: Stainer, I. et al. (2001) Q. J. R. Meteorol. Soc., vol. 127; Stainer T. et al. (2004) J. Geophys.

Res., Vol. 109

Config Control: CVS at sourcemotel.gsfc.nasa.gov; current tag: hh-cloy

POC: Ivanka Stajner

Affiliation: SAIC and NASA Goddard

Email Address: istajner@gmao.gsfc.nasa.gov

Phone #: (301) 614-6177

Funding: NASA

Contract #: RTOP 622-55-51-20

Contract Name: US OMI science team

Past Funding:

Currently Use NASA Data Products as Input: Yes

Being Investigated for Use of NASA Data Products as Input: No

Website:

Model Partners

Notes:

Information Last Updated:

GSFC 2D Model

Purpose: The model is used to help in understanding and predicting the influence of natural and human-induced influences on stratospheric ozone variation.

INPUTS

- · Solar flux
- Source gases
- NCEP Analysis / Atmospheric Temperature
- NCEP Analysis / Geopotential Height

Model Platforms

- Silicon Graphics Origin 200 Program Size: ~10,000

Run Time: ~80 minutes of computer time for one year of model time

Resolution Temporal: 1 day Vertical: ~2 km

Horizontal: 10 degrees

Range

Temporal: 1960-2050 Vertical: Ground to 90 km

Horizontal: South pole to North pole

Access to model product: Contact model POC

Validation: Fleming, E. L., C. H. Jackman, J. E. Rosenfield, D. B.

Considine, J. Geophys. Res., 107, D23, 4665, doi:10.1029/2001JD001146, 2002.

Config Control: Not Applicable

POC: Charles Jackman

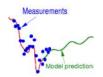
Affiliation: NASA Goddard Space Flight Center Email Address: Charles.H.Jackman@nasa.gov

Phone #: 301-614-6053 Funding: NASA

Contract #: RTOP 622-58-03

Contract Name: ACMAP - Atmospheric Chemistry Modeling and

Analysis Project Past Funding:


Currently Use NASA Data Products as Input: No

Being Investigated for Use of NASA Data Products as Input: No Website: http://code916.gsfc.nasa.gov/Public/Modelling/2D/2d.html

Model Partners

Notes:

Information Last Updated: 11/22/2004

Two-dimensional (latitude vs. altitude) model of the Earth's atmosphere

OUTPUTS

 stratospheric ozone and related trace gases

Mosaic LSM

Purpose: This is a well-tested, large-scale soil-vegetation-atmosphere-transfer(SVAT) model for use with atmospheric general circulation models. Vegetation heterogeneity is treated through a tiling approach.

INPUTS

- · Meteorological forcing (from atmospheric model, or reanalysis, or obs network, etc.)
- vegetation and soil description

Model Platforms

- Anything, if run offline (unattached to GCM)

Program Size: 2000 lines

Run Time: TBD Resolution

Temporal: 20 minute (or shorter) time step Vertical: 3 soil layers, one snow layer

Horizontal: Meant to represent GCM grid element (100s of km)

Range

Temporal: Any time, given availability of boundary condition data

Vertical: vegetation canopy to ~3 meters into soil

Horizontal: anywhere

Access to model product: Most products are distributed in teh form of scientific papers or research reports that provide a description of results. Some side application products are distributed through the GSWP (Global Soil Wetness Project) mostly as meteorological resources.

Validation: pilps 2c: Wood et al., J. Glob. Planet. Change, 19, pp. 115-135, 1998.

Config Control: n/a POC: Randal Koster

Affiliation: GMAO, NASA/GSFC

Email Address: randal.koster@gsfc.nasa.gov

Phone #: 301-614-5781

Funding: NASA Contract #: RTOP 51-622-33-88

Contract Name: Past Funding:

Currently Use NASA Data Products as Input: Yes

Being Investigated for Use of NASA Data Products as Input: No Website: http://nsipp.gsfc.nasa.gov/research/land/land_descr.html

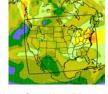
Model Partners

Notes: Reference: NASA Technical Memorandum 104606, Vol. 9.

Current use of NASA data is not checked because NASA data products are not used on a regular basis; they are occasionally used to outline a research project or define boundary conditions.

Information Last Updated: 2/19/2004

Energy, Water Flux


- Sensible heat flux
- · Soil moisture
- Surface temperature
- Surface evaporation
- Surface albedo
- Snow depth
- Water balance
- · surface radiation budget

RAQMS

Purpose: The LaRC/UW Regional Air Quality Modeling System (RAQMS) is a multi-scale meteorological and chemical modeling system for assimilating satellite observations of atmospheric composition and predicting atmospheric trace gas distributions.

INPUTS

- CO emission inventory
- NOx emission inventory
- POAM II / Ozone
- SAGE II / SAGE II: V6.20 Aerosol, O3, NO2, H2O Binary
- SAGE III / SAGE III G3ASSP: L2 Solar Event Species Profile
- TOMS / TOMS: Ozone
- GEOS-4 AGCM / Atmospheric pressure
- GEOS-4 AGCM / Atmospheric temperature
- GEOS-4 AGCM / Humidity
- GEOS-4 AGCM / Wind velocity

Air Quality Model

Model Platforms

- Unix, Linux

Program Size: 1 Gb executable

Run Time: 8 model days/24hr wall clock on dual 3Ghz Linux

processors Resolution Temporal: 6hr

Vertical: 36 levels (global) / 50 400-m levels (regional)

Horizontal: variable: baseline 2 deg (global) / 80 km (regional)

Range

Temporal: Seasonal

Vertical: 60 km (global) / 20 km (regional)

Horizontal: Global/Contential US

Access to model product: Products are not distributed through a DAAC. Most are available through Field Mission Data Sets, or

through the project itself.

Validation: Pierce, R. B. et al., Regional Air Quality Modeling System (RAQMS) predictions of the tropospheric ozone budget over east Asia, J. Geophys. Res. 108,

Config Control:

POC: Dr. Robert B. Pierce

Affiliation: NASA Langley Research Center Email Address: Robert.B.Pierce@nasa.gov

Phone #: (757) 864-5817

Funding: NASA

Contract #: 622-59-26-70

Contract Name: Past Funding:

Currently Use NASA Data Products as Input: Yes

Being Investigated for Use of NASA Data Products as Input: No Website: http://asd-www.larc.nasa.gov/new_AtSC/raqms.html

Model Partners

· University of Wisconsin-Madison

Notes:

Information Last Updated: 6/23/2004

- Atmospheric pressure
- Ozone concentration

AGWA

Purpose: Planning and assessment in land and water resource management are evolving from simple, local-scale problems toward complex, spatially explicit regional ones. Such problems have to be addressed with distributed models that can compute runoff and erosion at different spatial and temporal scales. The extensive data requirements and the difficult task of building input parameter files, however, have long represented an obstacle to the timely and cost-effective use of such complex models by resource managers. The USDA-ARS Southwest Watershed Research Center,

resource managers. The OSDA-ARS Southwest Watershed Research Center, in cooperation with the U.S. EPA Office of Research and Development, has developed a GIS tool to facilitate this process. A geographic information system (GIS) provides the framework within which spatially-distributed data are collected and used to prepare model input files and evaluate model results.

INPUTS

- Digital Elevation Model
- Landcover Type
- Precipitation
- Soil Hydraulic Properties
- Soil Physical properties
- TM / Land cover
- X-SAR / SRTM

GIS-based hydrologic modeling tool

Model Platforms

- Windows
- ArcView Spatial Analyst Extension
- ArcView 3.1 or later

Program Size: 212kb; with sample data/tutorials 139MB

Run Time: variable

Resolution

Temporal: variable, seconds to minutes Vertical: variable, 1cm-1m (soil depth)

Horizontal: variable, 1m-100m

Range

Temporal: variable, minutes to years Vertical: variable, 1m-10m (soil depth)

Horizontal: variable, 100mx100m - 100kmx100km

OUTPUTS

- Runoff
- Infiltration
- Peak flow
- Sediment yieldSediment discharge
- ET
- Percolation
- Surface runoff
- Transmission loss
- Water vield

Access to model product: please contact model Point of Contact

Validation:

Config Control: 1.32 POC: Darius Semmons Affiliation: USDA-ARS

Email Address: agwa@tuscon.ars.ag.gov

Phone #: 520-670-6380 x 163 Funding: USDA, USEPA, USACE

Contract #:

Contract Name:

Past Funding:

Currently Use NASA Data Products as Input: No

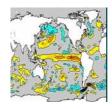
Being Investigated for Use of NASA Data Products as Input: Yes

Website: http://www.tucson.ars.ag.gov/agwa/

Model Partners

- USDA
- USEPA

Notes:


Information Last Updated: 5/10/2004

CIMMS-CCM

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical:

Access to model product:

Validation: Config Control: POC:

Horizontal:

Affiliation:

Email Address: Phone #:

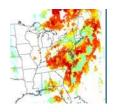
Phone #: Funding: Contract #:

Contract Name: Past Funding:

Currently Use NASA Data Products as Input: No Being Investigated for Use of NASA Data Products as

Input: No Website: Model Partners

Notes:


Information Last Updated:

OUTPUTS

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical:

Access to model product:

Validation:

Horizontal:

Config Control:

POC:

Affiliation:

Email Address:

Phone #: Funding:

Contract #:

Contract Name:

Past Funding:

Currently Use NASA Data Products as Input: No Being Investigated for Use of NASA Data Products as

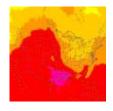
Input: No

Website:

Model Partners

OUTPUTS

Notes:


Information Last Updated:

FIP

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical:

Access to model product:

Validation:

Horizontal:

Config Control:

POC:

Affiliation:

Email Address:

Phone #:

Funding:

Contract #: Contract Name:

Past Funding:

Currently Use NASA Data Products as Input: No

Being Investigated for Use of NASA Data Products as Input: No

Website:

Model Partners

OUTPUTS

Notes:

Information Last Updated:

GEOS-CHEM

Purpose: The GEOS-CHEM model is a global three-dimensional model of atmospheric composition driven by assimilated meteorological observations from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation Office (GMAO). GEOS-CHEM is intended for application to a wide range of atmospheric chemistry problems. GEOS-CHEM is also a tool for supporting other activities such as: assessments (Global Modeling Initiative or GMI), satellite retrievals (NASA, CSA, ESA), regional air quality models (Community Multiscale Air Quality Modeling System or CMAQ), data assimilation (GMAO), and climate models (NASA Goddard Institute of Space Studies or GISS).

INPUTS

- GEOS-4 AGCM / Atmospheric pressure
 GEOS-4 AGCM / Atmospheric temperature
- GEOS-4 AGCM / Atmospheric temperature change rate
- GEOS-4 AGCM / Boundary layer height
 GEOS-4 AGCM / Cloud cover
- · GEOS-4 AGCM / Cloud mass flux
- GEOS-4 AGCM / Cloud optical depth
 GEOS-4 AGCM / Geopotential height
- GEOS-4 AGCM / Humidity
- GEOS-4 AGCM / Humidity change rate
- GEOS-4 AGCM / Precipitation rate
- · GEOS-4 AGCM / Radiation flux
- GEOS-4 AGCM / Snow depth
 GEOS-4 AGCM / Soil moisture
- GEOS-4 AGCM / Surface geopotential
- GEOS-4 AGCM / Surface heat and moisture fluxes
- · GEOS-4 AGCM / Surface roughness
- GEOS-4 AGCM / Surface temperature
- GEOS-4 AGCM / Surface temperature change rate
 GEOS-4 AGCM / Surface type
 GEOS-4 AGCM / Total precipital water

- GEOS-4 AGCM / Wind surface stress
- GEOS-4 AGCM / Wind velocity
- · GEOS-4 AGCM / Wind velocity change rate

Model Platforms

- SGI Origin & Power Challenge Cluster
- SGI Origin
- Linux PČ
- SunFire 3800 (SPARC)
- SGI Origin and SC45 Compaq Alpha
- Sun/SPĂRC
- Linux PC (2-processor) Grid of 3 128-node Linux machines
- Compaq Alpha
- IBM Workstations
- SGI Altix / Itanium workstations

Program Size: 100,000

Run Time: 3.5 hours/month (4 x 5, full-chemistry simulation on Altix)

Resolution

Temporal: 3 hours Vertical: 20-55 vertical layers

Horizontal: 2 deg latitude x 2.5 deg longitude until end of

1999; 1 deg x 1 deg afterward

Temporal: 1985-present Vertical: Surface to 80 km

Horizontal: Global

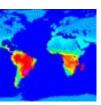
Access to model product: http://www-as.harvard.edu/chemistry/trop/geos/ index.html (also <http://www-

as.harvard.edu/chemistry/trop/geos/geos_gatekeeper.html> for source code and data files)

Validation: See Bey et al 2001: http://www-

as.harvard.edu/chemistry/trop/publications/bey2001a.pdf

Config Control: v7-01-02


POC: Daniel Jacob

Affiliation: Atmospheric Chemistry Modeling Group, Harvard University

Email Address: djacob@fas.harvard.edu

Phone #: 617-495-1794

Atmospheric Chemistry

OUTPUTS

- Dust emission
- · Optical thickness of individual and total aerosols
- Total aerosol concentration
- Individual aerosol concentration
- 3-D distribution of each aerosol type
- Ozone concentration
- Pressure
- ozone production and loss rates

Funding: NASA

Contract #: NNG04GA56G

Contract Name: Atmospheric Chemistry Modeling and Analysis Program

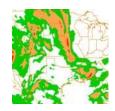
Past Funding:

Currently Use NASA Data Products as Input: Yes Being Investigated for Use of NASA Data Products as Input: No

Website: http://www-

as.harvard.edu/chemistry/trop/geos/index.html Model Partners

- · California Institute of Technology
- · Carnegie-Mellon University
- Dalhousie University
- Duke University
- Ecole Polytechnique Federale de Lausanne, Switzerland. Georgia Institute of Technology
- University of Houston
- JPL University of L'Aquila, Italy
- University of Leeds, UK
- NOAA
- · National Institute of Aerospace
- National Observatory of Athens, Greece
- Princeton University
- University of TennesseeUniversity of Toronto
- · University of Washington


Notes: The run times depend on which kind of simulation you are performing. The most computationally intensive simulation that you can perform is the NOx-Ox-hydrocarbon-aerosol simulation (aka "full-chemistry" simulation). A "full-chemistry" simulation on the 4 deg lat x 5 deg lon grid takes approximately 3.5 hours/month (SGI Altix). The same run at 2 deg lat x 2.5 deg lon takes about 19 hours/month (also on SGI Altix).

GTG

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical: Horizontal:

Access to model product:

Validation:

Config Control:

POC:

Affiliation:

Email Address:

Phone #:

Funding:

Contract #:

Contract Name:

Past Funding:

Currently Use NASA Data Products as Input: No Being Investigated for Use of NASA Data Products as

Input: No Website:

Model Partners

Notes:

Information Last Updated:

OUTPUTS

Hysplit4

Purpose: HYSPLIT ?is a complete system for computing simple trajectories to complex dispersion and deposition simulations using either puff or particle approaches. The model uses previously gridded meteorological data on a conformal or latitude-longitude map projection. Air concentration calculations associate the mass of the pollutant species with the release of either puffs, particles, or a combination of both. The dispersion rate is calculated from the vertical diffusivity profile, wind shear, and horizontal deformation of the wind field. Air concentrations are calculated at a specific grid point for puffs and as cell-average concentrations for particles.

INPUTS

 Meteorological forcing (from atmospheric model, or reanalysis, or obs network, etc.)

Model Platforms

 Most UNIX systems or Windows Program Size: 35.000 lines of code

Run Time: 25 sec on an IBM p630 for one 48-h simulation

Resolution

Temporal: 1 minute

Vertical: Particle position in sigma at single precision

Horizontal: Particle position in grid units at single precision

Range

Temporal: User selectable: 1 min to run duration

Vertical: User selectable: 1 m to top of model atmosphere Horizontal: User selectable: 0.001 deg to 0.5 deg (suggested max)

Access to model product: http://www.arl.noaa.gov/hysplit.html Validation: Draxler and Hess, 1998, Australian Meteorological

Magazine, 47:295-308 Config Control: 4.7 POC: Roland Draxler

Affiliation: NOAA Air Resources Laboratory Email Address: roland.draxler@noaa.gov

Phone #: 1-301-713-0295 x117

Funding: NOAA

Contract #: No current NASA funding

Contract Name:

Past Funding: NRA 98-OES-13

Currently Use NASA Data Products as Input: Yes

Being Investigated for Use of NASA Data Products as Input: No

Website: http://www.arl.noaa.gov/ready/hysplit4.html

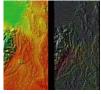
Model Partners

10 10 10 10

Air Trajectories, Pollutant Dispersion, and Deposition

OUTPUTS

- Individual aerosol concentration
- 3-D distribution of each aerosol type
- pollutant air concentrations and deposition


Notes: NASA contract funded development of the ensemble version of HYSPLIT. Current results can be found at http://www.arl.noaa.gov/data/web/ensemble/

Information Last Updated: 9/22/2004

Purpose: The PSU/NCAR mesoscale model is a limited-area, nonhydrostatic, terrain-following sigmacoordinate model designed to simulate or predict mesoscale and regional-scale atmospheric circulation. It has been developed at Penn State and NCAR as a community mesoscale model and is continuously being improved by contributions from users at several universities and government laboratories.

INPUTS

- Meteorological forcing (from atmospheric model, or reanalysis, or obs network, etc.)
- skin temperature
- Soil Hydraulic Properties
- Soil Physical properties
- vegetation and soil description
- Radiosonde / Atmospheric Variables Temperature Lidar / Temperature
- RUC / Atmospheric/land variables
- NCEP Analysis / Atmospheric/land variables

Mesoscale Meteorology

Model Platforms

- IBM
- SUN
- Linux - SGI
- DEC Alpha
- PC-Intel

Program Size: More than 100,000

Run Time: 25 minutes for 48 hour simulation using parameters in note 1

Resolution

Temporal: Seconds to minutes

Vertical: 500 m

Horizontal: 1 to 150 km

Range

Temporal: hours to years

Vertical: 50 mb

Horizontal: regional (1000's of km) NOTE: some global apps at

NCAR

Access to model product: Many available in standard binary output file. Others can be extracted via code modifications.

Validation: Multiple (see

http://box.mmm.ucar.edu/mm5/Publications/)

Config Control: Version 3-6-1 (Released March 4, 2003) POC: NCAR (http://www.mmm.ucar.edu/mm5/support.html)

Affiliation: Mesoscale and Microscale Meteorology Division

Email Address: mesouser@ucar.edu

Phone #: NA

Funding: Multiple Sources (primary NSF)

Contract #:

Contract Name:

Past Funding:

Currently Use NASA Data Products as Input: Yes

Being Investigated for Use of NASA Data Products as Input: Yes

Website: http://www.mmm.ucar.edu/mm5/mm5-home.html

Model Partners

Notes:1. Run time given is for a simulation with a nested configuration (outer domain of 115 x 98 x 27 [y,x,z] grid at 36 km horizontal resolution with a time step of 108 s and a 12 km 73 x 73 x 27 nested inner domain with a time step of 36 s) on a Linux cluster configures with 40 Pentium III 1.0 GHz processors interconnected via a Myrinet fiber optic backbone. More information on MM5 timing can be found at: http://www.mmm.ucar.edu/mm5/mm5v2/mm5v2-timing.html

Information Last Updated: 10/28/2004

- Total aerosol concentration
- 3-D distribution of each aerosol type
- Absorption
- Single scattering albedo
- Radiative forcing
- Heating / Cooling Rates
- Surface geopotential
- Atmospheric temperature
- Sensible heat flux
- Atmospheric pressure
- Precipitation rate
- Total precipital water
- Soil moisture
- Wind surface stress
- Surface temperature
- Geopotential height
- Humidity
- Surface evaporation
- Radiation flux
- Surface albedo
- Friction velocity
- Surface roughness
- Boundary layer height
- Surface temperature change
- rate Snow depth
- Cloud cover
- · Cloud optical depth
- · Wind velocity change rate
- Humidity change rate
- Eddy diffusivity
- Cloud mass flux
- Atmospheric temperature change rate
- Surface type
- Wind velocity
- Water balance
- surface radiation budget
- Energy balance
- Runoff
- Soil Temperature
- Snow water equivalent
- Latent heat flux
- Ground heat flux
- Evapotranspiration
- Evaporation
- Transpiration Infiltration
- Land NPP
- Sea surface temperature
- Surface heat and moistur fluxes
- Water vapor mixing ratio
- Snowfall amount
- Momentum flux

NCAR TIMEGCM

Purpose: Purpose: Three-dimensional, time-dependent model used to simulate Earth's circulation, temperature, electrodynamics, and compositional structure of the upper atmosphere and ionosphere. INPUTS

- satellite radiometer / 10 mb ncep lower boundary
- radio antennae / 10.7 cm solar flux
- magnetometer / Kp index

Model Platforms

- IBM-AIX
- SGI-IRIX64
 GNU Linux

Program Size: 70,000

Run Time: 10 minutes per simulated day (5 minute timestep)

Resolution

Temporal: typically 3-5 minute timestep Vertical: 0.5 or 0.25 ln(p0/p)

Vertical: 0.5 or 0.25 ln(p0/p) Horizontal: 2.5x2.5 or 5x5 degrees

Range

Temporal: full year runs Vertical: approx 30-500 km

Horizontal: global

Access to model product: Please contact POC or Ben Foster for

history file outputs in netCDF format

Validation: * (see notes below)

Config Control: Version 1 (Version 2 released in Spring 2005) POC: Ray Roble

Affiliation: NCAR

Email Address: roble@ncar.ucar.edu

Phone #: 303-497-1562

Funding: NASA, National Science Foundation (NSF), Office of Naval Research (ONR)

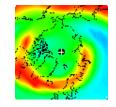
Contract #: No. S-13, 796-G

Contract Name: Sun-Earth Connection Theory Program

Past Funding:

Currently Use NASA Data Products as Input: Yes

Being Investigated for Use of NASA Data Products as Input: No


Website: http://www.hao.ucar.edu/public/research/tiso/tgcm/tgcm.html

Model Partners

Notes: *See also <http://www.hao.ucar.edu/public/research/tiso/tgcm/tgcm.html> and <http://download.hao.ucar.edu/pub/tgcm/doc/userguide/> (under construction) Can provide extensive bibli-

ography (e.g., Roble, R.G., et.al.)

Information Last Updated: 11/22/2004

Thermospherelonosphere General Circulation Model

- Heating / Cooling Rates
- Atmospheric temperature
 Connectantial baight
- Geopotential height
- Wind velocity
- Water vapor mixing ratio
- o2, o, n4s, noz, no, no2, o3, oh, ho2, h, w, ions, etc.

NCVP

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical:

Access to model product:

Validation:

Config Control: POC:

Affiliation:

Horizontal:

Email Address: Phone #:

Funding:

Contract #:

Contract Name:

Past Funding:

Currently Use NASA Data Products as Input: No

Being Investigated for Use of NASA Data Products as

Input: No

Website: Model Partners

OUTPUTS

Notes:

Information Last Updated:

NCWF

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical: Horizontal:

Access to model product:

Validation:

Config Control:

POC:

Affiliation:

Email Address:

Phone #:

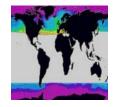
Funding:

Contract #:
Contract Name:
Past Funding:
Currently Use NASA Data Products as Input: No Being Investigated for Use of NASA Data Products as Input: No

Website:

Model Partners

Notes:


Information Last Updated:

RUC

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical:

Access to model product:

Validation:

Horizontal:

Config Control:

POC:

Affiliation:

Email Address:

Phone #:

Funding: Contract #:

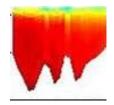
Contract Name:

Past Funding: Currently Use NASA Data Products as Input: No

Being Investigated for Use of NASA Data Products as

Input: No Website:

Model Partners


Information Last Updated:

SMOKE

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical:

Access to model product:

Validation:

Horizontal:

Config Control:

POC:

Affiliation:

Email Address:

Phone #:

Funding: Contract #:

Contract Name:

Past Funding:

Currently Use NASA Data Products as Input: No Reing Investigated for Use of NASA Data Products

Being Investigated for Use of NASA Data Products as Input: No

Website:

Model Partners

Notes:

Information Last Updated:

SWAT

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical:

Access to model product:

Validation:

Horizontal:

Config Control:

POC:

Affiliation:

Email Address: Phone #:

Funding:

Contract #: Contract Name:

Past Funding:

Currently Use NASA Data Products as Input: No Being Investigated for Use of NASA Data Products as Input: No

Website: Model Partners **OUTPUTS**

Notes:

Information Last Updated:

WACCM

Purpose: The Whole-Atmosphere Community Climate Model (WACCM) is a comprehensive numerical model, spanning the range of altitude from the Earth's surface to the thermosphere. The development of WACCM is an inter-divisional collaboration that unifies certain aspects of the upper atmospheric modeling of HAO, the middle atmosphere modeling of ACD, and the tropospheric modeling of CGD, using the NCAR Community Climate System Model (CCSM) as a common numerical framework.

INPUTS

- · aerosol distribution
- · Boundary condititions for source gases specified by WMO
- Chemical Kinetics and Photochemical Data from the current JPL evaluation
- SEA SURFACE TEMPERATURES
- solar flux

Model Platforms

IBM Power-4 cluster, running AIX

Program Size: approx. 25.000 lines (see note 2)

Run Time: approx. 1 day / model year on 96 CPUs (12 nodes x 8

processors) Resolution

Temporal: 15 minutes Vertical: variable: 1.3-3 km Horizontal: 2 x 2.5 degrees

Range

Temporal: annual to century-scale climate simulations

Vertical: 0-140 km approx.

Horizontal: global

Access to model product: NCAR/UCAR Community Data Portal: https://cdp.ucar.edu/

Validation: Use of NASA data for validation purposes: UARS and

TIMED satellites

Config Control: waccm1b (noninteractive chemistry) currently available

POC: Rolando Garcia Affiliation: NCAR/ACD

Email Address: rgarcia@ucar.edu

Phone #: 303 497-1446 Funding: NCAR (NSF)

Contract #: not currently NASA funded

Contract Name:

Past Funding: 2001-2003 NRA-00-01-LWS-059 Currently Use NASA Data Products as Input: Yes

Being Investigated for Use of NASA Data Products as Input: No Website: http://www.acd.ucar.edu/science/models/WACCM

Model Partners

40

Dynamics and Chemistry, Surface to Lower Thermosphere

OUTPUTS

- · Heating / Cooling Rates
- Surface geopotential
- Atmospheric temperature
- Atmospheric pressurePrecipitation rate
- · Geopotential height
- Humidity
- Cloud cover
- Ozone concentration
- Wind velocity
- Water vapor mixing ratio
 full suite of middle atmosphere chemical species

Notes:Note 1: NASA data only used for validation purposes. Note 2: 1.5GB per MPI process, running 12 processes on 8 processor nodes.

Information Last Updated: 10/28/2004

WAVEWATCH III

Purpose: This is a generic ocean wave model that runs on nearly all computer architectures. Example applications and source codes can be found at the NOAA/NCEP web site (see below).

- · Analyzed / forecasted sea ice products
- Analyzed / forecasted sea surface temperature products Analyzed / forecasted surface wind products
- Near-surface wind
- In situ buoys / Wave and wind data
 Altimeter / Wave data
- · SAR / Wave spectra

Model Platforms

- UNIX/Linux single processor, OpenMP or MPI

Program Size: 50,000 lines of code, 60% of which is documentation. Run Time: 30,000 grid point global NCEP model takes 75s per forecast

day on 16 IBM power4 processors.

Resolution

Temporal: 1 min to 1 h

Vertical: N/A

Horizontal: 1km to 100 km

Range

Temporal: depends on available forcing only.

Vertical: N/A

Horizontal: Global or regional, depending on resolution

Access to model product: http://polar.ncep.noaa.gov/waves/products.html

Validation: http://polar.ncep.noaa.gov/waves

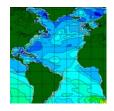
Config Control: Version 2.22 POC: Hendrik L. Tolman Affiliation: SAIC-GSO at NOAA/NCEP

Email Address: Hendrik.Tolman@NOAA.gov

Phone #: 301-763-8133 x 7253

Funding: None Contract #:

Contract Name:


Past Funding: Previous model WAVEWATCH II NASA funded 1990-

1992 (NRC Ře. Res. Ass.)

Currently Use NASA Data Products as Input: No

Being Investigated for Use of NASA Data Products as Input: No

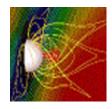
Website: http://polar.ncep.noaa.gov/waves/wavewatch Model Partners

Generic Ocean Wind Wave Model

OUTPUTS

- Significant wave height
- · Mean wave length
- Mean wave period
- Mean wave direction Sea ice concentration
- Water level
- Peak wave direction
- Peak wave frequency
- Wind sea peak frequency
- Wind sea peak direction
- Mean directional wave energy spread
- Full spectral wave data (at selected output points)

Notes:Due to the nature of the forecast problem, initial conditions are not essential, and hence good forecasts can be achieved without analysis data, provided that the model provides its own initial conditions for continuity, and that it is has spun up for a sufficient period (hours for small scale applications to several weeks for Pacific applications).


Information Last Updated: 10/28/2004

BATS-R-US EEG

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical: Horizontal:

Access to model product:

Validation:

Config Control:

POC: Affiliation:

Email Address:

Phone #:

Funding: Contract #:

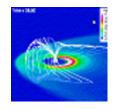
Contract Name: Past Funding:

Currently Use NASA Data Products as Input: No Being Investigated for Use of NASA Data Products as

Input: No Website: Model Partners

Notes:

Information Last Updated:



BATS-R-US GM

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical:

Access to model product:

Validation:

Horizontal:

Config Control:

POC:

Affiliation:

Email Address:

Phone #:

Funding:

Contract #:

Contract Name:

Past Funding:

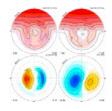
Currently Use NASA Data Products as Input: No Being Investigated for Use of NASA Data Products as Input: No

Website:

Model Partners

Notes:

Information Last Updated:


OUTPUTS

BATS-R-US IE

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical:

Access to model product:

Validation:

Horizontal:

Config Control:

POC:

Affiliation:

Email Address:

Phone #: Funding:

Contract #:

Contract Name:

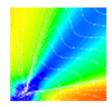
Past Funding: Currently Use NAS

Currently Use NASA Data Products as Input: No Being Investigated for Use of NASA Data Products as

Input: No Website: Model Partners

Notes:

Information Last Updated:


OUTPUTS

BATS-R-US IH

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical:

Access to model product:

Validation:

Horizontal:

Config Control:

POC: Affiliation:

Email Address:

Phone #: Funding:

Contract #:

Contract Name:

Past Funding:

Currently Use NASA Data Products as Input: No Being Investigated for Use of NASA Data Products as

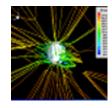
Input: No

Website:

Model Partners

Notes:

Information Last Updated:


OUTPUTS

BATS-R-US SC

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical: Horizontal:

Access to model product:

Validation:

Config Control:

POC:

Affiliation:

Email Address:

Phone #:

Funding: Contract #:

Contract Name:

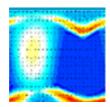
Past Funding: Currently Use NASA Data Products as Input: No Being Investigated for Use of NASA Data Products as

Input: No Website:

Model Partners

Notes:

Information Last Updated:


OUTPUTS

GITM

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical:

Access to model product:

Validation:

Horizontal:

Config Control:

POC:

Affiliation:

Email Address:

Phone #:

Funding: Contract #:

Contract Name: Past Funding:

Currently Use NASA Data Products as Input: No Being Investigated for Use of NASA Data Products as Input:

Website:

Model Partners

Notes:

Information Last Updated:

Open GGCM

Purpose:

INPUTS

Model Platforms Program Size: Run Time: Resolution Temporal: Vertical: Horizontal: Range Temporal: Vertical:

Access to model product:

Validation:

Horizontal:

Config Control:

POC:

Affiliation:

Email Address:

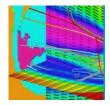
Phone #: Funding:

Contract #:

Contract Name:

Past Funding:

Currently Use NASA Data Products as Input:


Being Investigated for Use of NASA Data Products as Input:

Website:

Model Partners

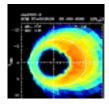
Information Last Updated:

Global Magnetohydrodynamic Magnetosphere

RCM

Purpose: First-principles modeling of Earth's inner magnetosphere and coupling to ionosphere

INPUTS


- · Dst index
- ground based / magnetometters
- LANL / plasma
- ACE plasma detector / solar wind density and velocity
- ACE magnetometer / solar wind magnetic field
- Hilmer-Voigt / magnetic field model

Model Platforms

- Unix workstation
- Program Size: 12,000 lines of code
- Run Time: About 1 hr CPU time for 1 hour magnetosphere time
- Resolution
- Temporal: 10 minutes Vertical: 0.2 Earth radii (RE) in equatorial plane
- Horizontal: 1 RE in equatorial plane
- Temporal: 48 hours for typical magnetic storm
- Vertical: 10 RE Horizontal: 20 RE
- Access to model product: Contact S. Sazykin (sazykin@rice.edu),
- R. Spiro (spiro@rice.edu), or R. Wolf (rawolf@rice.edu)
- Validation: Garner et al., JGR, 109, A02214, 2004
- Config Control: Version 2004A
- POC: Dr. Richard Wolf Affiliation: Rice University
- Email Address: rawolf@rice.edu
- Phone #: 713-348-3308
- Fundina: NSF, NASA
- Contract #: NAG5-11881
- Contract Name: Magnetospheric storm dynamics
- Past Funding: 1999-2001, NAG5-8136 Currently Use NASA Data Products as Input: Yes
- Being Investigated for Use of NASA Data Products as Input: No
- Website:
- Model Partners

Notes:

Information Last Updated: 3/4/2005

Inner Magnetosphere

- · lonospheric potential distribution
- Ring current and plasma sheet
- particle fluxes

 Magnetic-field-aligned current distribution

Earth-Sun Science Laboratories

Laboratory for Terrestrial Physics

GSFC Laboratory for Atmospheres

Global Hydrology and Climate Center

Short Term Prediction Research and Transition Center

Community Coordinated Modeling Center

Joint Center for Satellite Data Assimilation

Laboratory for Hydrosphereic Processes

Goddard Institute for **Space Studies**

Partner Laboratories

Geophysical Fluid **Dynamics Laboratory**

Los Alamos National Laboratory

Air Resources Laboratory

Office of Research and Applications

Network for Earthquake Engineering Simulation

Pacific Northwest National Laboratory

Sandia National Laboratories

Lawrence Livermore **National Laboratory**

National Center for Atmospheric Research

National Centers Environmental Prediction Environmental Prediction

National Centers for

Suggested Reading

Hill, Chris, Cecelia DeLuca, Balaji, Max Suarez, and Arlindo da Silva, 2004. "The Architecture of the Earth System Modeling Framework". Computing in Science & Engineering, 6(1):18-28.

Lin, Shian-Jiann, Robert Atlas, and Kao-San Yeh, 2004. "Global Weather Prediction and High-End Computing at NASA". Computing in Science & Engineering, 6(1):18-28.

Donnellan, Andrea, John Rundle, John Ries, Geoffrey Fox, Marlon Pierce, Jay Parker, Robert Crippen, Eric DeJong, Ben Chao, Weijia Kuang, Dennis McLeod, Mitsuhiro Matu'ura, and Jeremy Bloxham, 2004. "Illuminating the Earth's Interior Through Advanced Computing". Computing in Science & Engineering, 6(1):36-44.

King, Roger L. and Ronald J. Birk, 2004. "Developing Earth System Science Knowledge to Manage Earth's Natural Resources". Computing in Science & Engineering, 6(1): 45-51.

Science Mission Directorate Earth-Sun System Division

This booklet is part of a series of three booklets. Please read the Satellite Missions booklet for more information on the individual missions and the Partner Decision Support Tools booklet for more information on support tools.

These booklets are derived from the Earth-Sun Science System
Components Knowledge Base which is available on-line at http://www.asd.ssc.nasa.gov/m2m

For more information please e-mail us at:

EarthScience@ssc.nasa.gov

http://science.hq.nasa.gov

